

Python	for	Everybody
Charles	R	Severance

Creative	Commons	Non-Commercial	Share	Alike	3.0

Why	should	you	learn	to	write
programs?
Writing	 programs	 (or	 programming)	 is	 a	 very	 creative	 and	 rewarding	 activity.
You	can	write	programs	for	many	reasons,	ranging	from	making	your	living	to
solving	a	difficult	data	analysis	problem	to	having	fun	to	helping	someone	else
solve	 a	 problem.	 This	 book	 assumes	 that	 everyone	 needs	 to	 know	 how	 to
program,	and	that	once	you	know	how	to	program	you	will	figure	out	what	you
want	to	do	with	your	newfound	skills.

We	are	surrounded	in	our	daily	lives	with	computers	ranging	from	laptops	to	cell
phones.	We	can	 think	of	 these	computers	as	our	 "personal	assistants"	who	can
take	 care	 of	 many	 things	 on	 our	 behalf.	 The	 hardware	 in	 our	 current-day
computers	is	essentially	built	to	continuously	ask	us	the	question,	"What	would
you	like	me	to	do	next?"

What
Next?

What
Next?

What
Next?

What
Next?

What
Next?

What
Next?

Personal	Digital	Assistant

Programmers	add	an	operating	system	and	a	set	of	applications	to	the	hardware
and	we	end	up	with	a	Personal	Digital	Assistant	that	is	quite	helpful	and	capable
of	helping	us	do	many	different	things.

Our	 computers	 are	 fast	 and	 have	 vast	 amounts	 of	memory	 and	 could	 be	 very
helpful	to	us	if	we	only	knew	the	language	to	speak	to	explain	to	the	computer
what	we	would	like	it	to	"do	next".	If	we	knew	this	language,	we	could	tell	the
computer	to	do	tasks	on	our	behalf	that	were	repetitive.	Interestingly,	the	kinds
of	 things	 computers	 can	 do	best	 are	 often	 the	 kinds	 of	 things	 that	we	humans
find	boring	and	mind-numbing.

For	 example,	 look	 at	 the	 first	 three	 paragraphs	 of	 this	 chapter	 and	 tell	me	 the
most	 commonly	used	word	 and	how	many	 times	 the	word	 is	 used.	While	you
were	able	to	read	and	understand	the	words	in	a	few	seconds,	counting	them	is

almost	 painful	 because	 it	 is	 not	 the	 kind	 of	 problem	 that	 human	 minds	 are
designed	 to	 solve.	 For	 a	 computer,	 the	 opposite	 is	 true,	 reading	 and
understanding	 text	 from	 a	 piece	 of	 paper	 is	 hard	 for	 a	 computer	 to	 do	 but
counting	 the	words	 and	 telling	 you	 how	many	 times	 the	most	 used	word	was
used	is	very	easy	for	the	computer:

python	words.py

Enter	file:words.txt

to	16

Our	"personal	information	analysis	assistant"	quickly	told	us	that	the	word	"to"
was	used	sixteen	times	in	the	first	three	paragraphs	of	this	chapter.

This	very	fact	that	computers	are	good	at	things	that	humans	are	not	is	why	you
need	to	become	skilled	at	talking	"computer	language".	Once	you	learn	this	new
language,	 you	 can	 delegate	 mundane	 tasks	 to	 your	 partner	 (the	 computer),
leaving	more	time	for	you	to	do	the	things	that	you	are	uniquely	suited	for.	You
bring	creativity,	intuition,	and	inventiveness	to	this	partnership.

Creativity	and	motivation

While	 this	 book	 is	 not	 intended	 for	 professional	 programmers,	 professional
programming	 can	 be	 a	 very	 rewarding	 job	 both	 financially	 and	 personally.
Building	useful,	elegant,	and	clever	programs	for	others	to	use	is	a	very	creative
activity.	 Your	 computer	 or	 Personal	 Digital	 Assistant	 (PDA)	 usually	 contains
many	 different	 programs	 from	 many	 different	 groups	 of	 programmers,	 each
competing	for	your	attention	and	interest.	They	try	their	best	to	meet	your	needs
and	 give	 you	 a	 great	 user	 experience	 in	 the	 process.	 In	 some	 situations,	when
you	 choose	 a	 piece	 of	 software,	 the	 programmers	 are	 directly	 compensated
because	of	your	choice.

If	 we	 think	 of	 programs	 as	 the	 creative	 output	 of	 groups	 of	 programmers,
perhaps	the	following	figure	is	a	more	sensible	version	of	our	PDA:

Pick
Me!

Pick	
Me!

Pick
Me!

Pick	
Me!

Pick	
Me!

Buy	
Me	:)

Programmers	Talking	to	You

For	now,	our	primary	motivation	is	not	to	make	money	or	please	end	users,	but
instead	for	us	to	be	more	productive	in	handling	the	data	and	information	that	we
will	 encounter	 in	 our	 lives.	 When	 you	 first	 start,	 you	 will	 be	 both	 the
programmer	 and	 the	 end	 user	 of	 your	 programs.	 As	 you	 gain	 skill	 as	 a
programmer	 and	 programming	 feels	more	 creative	 to	 you,	 your	 thoughts	may
turn	toward	developing	programs	for	others.

Computer	hardware	architecture

Before	we	start	learning	the	language	we	speak	to	give	instructions	to	computers
to	develop	software,	we	need	to	learn	a	small	amount	about	how	computers	are
built.	If	you	were	to	take	apart	your	computer	or	cell	phone	and	look	deep	inside,
you	would	find	the	following	parts:

Input	and
Output
Devices

Software

Main	
Memory

Central
Processing

Unit

What
Next?

Network

Secondary
Memory

Hardware	Architecture

The	high-level	definitions	of	these	parts	are	as	follows:

The	Central	Processing	Unit	 (or	CPU)	 is	 the	part	 of	 the	 computer	 that	 is
built	 to	be	obsessed	with	 "what	 is	next?"	 If	your	computer	 is	 rated	at	3.0
Gigahertz,	it	means	that	the	CPU	will	ask	"What	next?"	three	billion	times
per	second.	You	are	going	to	have	to	learn	how	to	talk	fast	to	keep	up	with
the	CPU.

The	Main	Memory	 is	 used	 to	 store	 information	 that	 the	 CPU	 needs	 in	 a
hurry.	The	main	memory	is	nearly	as	fast	as	the	CPU.	But	the	information
stored	in	the	main	memory	vanishes	when	the	computer	is	turned	off.

The	Secondary	Memory	 is	 also	 used	 to	 store	 information,	 but	 it	 is	much
slower	than	the	main	memory.	The	advantage	of	the	secondary	memory	is

that	it	can	store	information	even	when	there	is	no	power	to	the	computer.
Examples	of	secondary	memory	are	disk	drives	or	flash	memory	(typically
found	in	USB	sticks	and	portable	music	players).

The	 Input	 and	 Output	 Devices	 are	 simply	 our	 screen,	 keyboard,	 mouse,
microphone,	 speaker,	 touchpad,	 etc.	 They	 are	 all	 of	 the	ways	we	 interact
with	the	computer.

These	 days,	 most	 computers	 also	 have	 a	Network	Connection	 to	 retrieve
information	 over	 a	 network.	We	 can	 think	 of	 the	 network	 as	 a	 very	 slow
place	to	store	and	retrieve	data	that	might	not	always	be	"up".	So	in	a	sense,
the	network	is	a	slower	and	at	times	unreliable	form	of	Secondary	Memory.

While	most	of	the	detail	of	how	these	components	work	is	best	left	to	computer
builders,	it	helps	to	have	some	terminology	so	we	can	talk	about	these	different
parts	as	we	write	our	programs.

As	a	programmer,	your	 job	is	 to	use	and	orchestrate	each	of	 these	resources	 to
solve	the	problem	that	you	need	to	solve	and	analyze	the	data	you	get	from	the
solution.	As	a	programmer	you	will	mostly	be	"talking"	to	the	CPU	and	telling	it
what	 to	 do	 next.	 Sometimes	 you	 will	 tell	 the	 CPU	 to	 use	 the	 main	 memory,
secondary	memory,	network,	or	the	input/output	devices.

Input	and
Output
Devices

Software

Main	
Memory

Central
Processing

Unit

What
Next?

Network

Secondary
Memory

Where	Are	You?

You	need	to	be	the	person	who	answers	the	CPU's	"What	next?"	question.	But	it
would	be	very	uncomfortable	to	shrink	you	down	to	5mm	tall	and	insert	you	into
the	computer	just	so	you	could	issue	a	command	three	billion	times	per	second.
So	 instead,	 you	must	 write	 down	 your	 instructions	 in	 advance.	We	 call	 these
stored	instructions	a	program	and	the	act	of	writing	these	instructions	down	and
getting	the	instructions	to	be	correct	programming.

Understanding	programming

In	the	rest	of	this	book,	we	will	try	to	turn	you	into	a	person	who	is	skilled	in	the
art	 of	 programming.	 In	 the	 end	 you	 will	 be	 a	 programmer	 -	 perhaps	 not	 a
professional	 programmer,	 but	 at	 least	 you	 will	 have	 the	 skills	 to	 look	 at	 a
data/information	analysis	problem	and	develop	a	program	to	solve	the	problem.

In	a	sense,	you	need	two	skills	to	be	a	programmer:

First,	you	need	to	know	the	programming	language	(Python)	-	you	need	to
know	 the	 vocabulary	 and	 the	 grammar.	 You	 need	 to	 be	 able	 to	 spell	 the
words	 in	 this	 new	 language	 properly	 and	 know	 how	 to	 construct	 well-
formed	"sentences"	in	this	new	language.

Second,	you	need	 to	"tell	a	story".	 In	writing	a	story,	you	combine	words
and	 sentences	 to	 convey	 an	 idea	 to	 the	 reader.	 There	 is	 a	 skill	 and	 art	 in
constructing	the	story,	and	skill	in	story	writing	is	improved	by	doing	some
writing	 and	 getting	 some	 feedback.	 In	 programming,	 our	 program	 is	 the
"story"	and	the	problem	you	are	trying	to	solve	is	the	"idea".

Once	 you	 learn	 one	 programming	 language	 such	 as	 Python,	 you	 will	 find	 it
much	easier	to	learn	a	second	programming	language	such	as	JavaScript	or	C++.
The	new	programming	language	has	very	different	vocabulary	and	grammar	but
the	problem-solving	skills	will	be	the	same	across	all	programming	languages.

You	will	learn	the	"vocabulary"	and	"sentences"	of	Python	pretty	quickly.	It	will
take	longer	for	you	to	be	able	to	write	a	coherent	program	to	solve	a	brand-new
problem.	We	 teach	programming	much	 like	we	 teach	writing.	We	start	 reading
and	 explaining	 programs,	 then	 we	 write	 simple	 programs,	 and	 then	 we	 write
increasingly	complex	programs	over	 time.	At	 some	point	you	"get	your	muse"
and	 see	 the	 patterns	 on	 your	 own	 and	 can	 see	 more	 naturally	 how	 to	 take	 a
problem	and	write	a	program	that	solves	that	problem.	And	once	you	get	to	that
point,	programming	becomes	a	very	pleasant	and	creative	process.

We	start	with	the	vocabulary	and	structure	of	Python	programs.	Be	patient	as	the
simple	examples	remind	you	of	when	you	started	reading	for	the	first	time.

Words	and	sentences

Unlike	human	languages,	the	Python	vocabulary	is	actually	pretty	small.	We	call
this	"vocabulary"	the	"reserved	words".	These	are	words	that	have	very	special
meaning	 to	Python.	When	Python	 sees	 these	words	 in	 a	Python	program,	 they
have	one	and	only	one	meaning	to	Python.	Later	as	you	write	programs	you	will
make	up	your	own	words	 that	have	meaning	 to	you	called	variables.	You	will
have	great	 latitude	 in	 choosing	your	 names	 for	 your	 variables,	 but	 you	 cannot
use	any	of	Python's	reserved	words	as	a	name	for	a	variable.

When	we	train	a	dog,	we	use	special	words	like	"sit",	"stay",	and	"fetch".	When
you	talk	to	a	dog	and	don't	use	any	of	the	reserved	words,	they	just	look	at	you
with	a	quizzical	look	on	their	face	until	you	say	a	reserved	word.	For	example,	if
you	say,	"I	wish	more	people	would	walk	to	improve	their	overall	health",	what
most	 dogs	 likely	 hear	 is,	 "blah	 blah	 blah	walk	 blah	 blah	 blah	 blah."	 That	 is
because	"walk"	is	a	reserved	word	in	dog	language.	Many	might	suggest	that	the
language	between	humans	and	cats	has	no	reserved	words1.

The	 reserved	words	 in	 the	 language	where	 humans	 talk	 to	 Python	 include	 the
following:

and							del							global						not							with

as								elif						if										or								yield

assert				else						import						pass						

break					except				in										raise

class					finally			is										return

continue		for							lambda						try

def							from						nonlocal				while				

That	is	it,	and	unlike	a	dog,	Python	is	already	completely	trained.	When	you	say
"try",	Python	will	try	every	time	you	say	it	without	fail.

We	will	learn	these	reserved	words	and	how	they	are	used	in	good	time,	but	for
now	 we	 will	 focus	 on	 the	 Python	 equivalent	 of	 "speak"	 (in	 human-to-dog
language).	The	nice	thing	about	telling	Python	to	speak	is	that	we	can	even	tell	it
what	to	say	by	giving	it	a	message	in	quotes:

print('Hello	world!')

And	we	have	 even	written	 our	 first	 syntactically	 correct	Python	 sentence.	Our
sentence	 starts	 with	 the	 function	 print	 followed	 by	 a	 string	 of	 text	 of	 our

choosing	 enclosed	 in	 single	 quotes.	 The	 strings	 in	 the	 print	 statements	 are
enclosed	 in	 quotes.	 Single	 quotes	 and	 double	 quotes	 do	 the	 same	 thing;	most
people	use	single	quotes	except	in	cases	like	this	where	a	single	quote	(which	is
also	an	apostrophe)	appears	in	the	string.

Conversing	with	Python

Now	 that	we	have	 a	word	 and	 a	 simple	 sentence	 that	we	know	 in	Python,	we
need	to	know	how	to	start	a	conversation	with	Python	to	test	our	new	language
skills.

Before	you	can	converse	with	Python,	you	must	first	install	the	Python	software
on	your	computer	and	learn	how	to	start	Python	on	your	computer.	That	 is	 too
much	detail	for	this	chapter	so	I	suggest	that	you	consult	www.py4e.com	where	I
have	detailed	 instructions	 and	 screencasts	of	 setting	up	and	 starting	Python	on
Macintosh	and	Windows	 systems.	At	 some	point,	 you	will	 be	 in	 a	 terminal	or
command	window	and	you	will	type	python	and	the	Python	interpreter	will	start
executing	in	interactive	mode	and	appear	somewhat	as	follows:

Python	3.5.1	(v3.5.1:37a07cee5969,	Dec		6	2015,	01:54:25)

[MSC	v.1900	64	bit	(AMD64)]	on	win32

Type	"help",	"copyright",	"credits"	or	"license"	for	more

information.

>>>

The	 >>>	 prompt	 is	 the	 Python	 interpreter's	way	 of	 asking	 you,	 "What	 do	 you
want	me	to	do	next?"	Python	is	ready	to	have	a	conversation	with	you.	All	you
have	to	know	is	how	to	speak	the	Python	language.

Let's	say	for	example	that	you	did	not	know	even	the	simplest	Python	language
words	or	sentences.	You	might	want	to	use	the	standard	line	that	astronauts	use
when	they	land	on	a	faraway	planet	and	try	to	speak	with	the	inhabitants	of	the
planet:

>>>	I	come	in	peace,	please	take	me	to	your	leader

File	"<stdin>",	line	1

		I	come	in	peace,	please	take	me	to	your	leader

							^

http://www.py4e.com

SyntaxError:	invalid	syntax

>>>

This	is	not	going	so	well.	Unless	you	think	of	something	quickly,	the	inhabitants
of	the	planet	are	likely	to	stab	you	with	their	spears,	put	you	on	a	spit,	roast	you
over	a	fire,	and	eat	you	for	dinner.

Luckily	you	brought	a	copy	of	this	book	on	your	travels,	and	you	thumb	to	this
very	page	and	try	again:

>>>	print('Hello	world!')

Hello	world!

This	is	looking	much	better,	so	you	try	to	communicate	some	more:

>>>	print('You	must	be	the	legendary	god	that	comes	from	the	sky')

You	must	be	the	legendary	god	that	comes	from	the	sky

>>>	print('We	have	been	waiting	for	you	for	a	long	time')

We	have	been	waiting	for	you	for	a	long	time

>>>	print('Our	legend	says	you	will	be	very	tasty	with	mustard')

Our	legend	says	you	will	be	very	tasty	with	mustard

>>>	print	'We	will	have	a	feast	tonight	unless	you	say

File	"<stdin>",	line	1

		print	'We	will	have	a	feast	tonight	unless	you	say

																																																			^

SyntaxError:	Missing	parentheses	in	call	to	'print'

>>>

The	conversation	was	going	so	well	 for	a	while	and	 then	you	made	 the	 tiniest
mistake	using	the	Python	language	and	Python	brought	the	spears	back	out.

At	 this	 point,	 you	 should	 also	 realize	 that	while	Python	 is	 amazingly	 complex
and	powerful	and	very	picky	about	the	syntax	you	use	to	communicate	with	it,
Python	is	not	intelligent.	You	are	really	just	having	a	conversation	with	yourself,
but	using	proper	syntax.

In	a	sense,	when	you	use	a	program	written	by	someone	else	the	conversation	is
between	 you	 and	 those	 other	 programmers	 with	 Python	 acting	 as	 an
intermediary.	Python	 is	a	way	 for	 the	creators	of	programs	 to	express	how	 the

conversation	is	supposed	to	proceed.	And	in	just	a	few	more	chapters,	you	will
be	one	of	those	programmers	using	Python	to	talk	to	the	users	of	your	program.

Before	we	 leave	our	 first	 conversation	with	 the	Python	 interpreter,	 you	 should
probably	 know	 the	 proper	 way	 to	 say	 "good-bye"	 when	 interacting	 with	 the
inhabitants	of	Planet	Python:

>>>	good-bye

Traceback	(most	recent	call	last):

File	"<stdin>",	line	1,	in	<module>

NameError:	name	'good'	is	not	defined

>>>	if	you	don't	mind,	I	need	to	leave

File	"<stdin>",	line	1

		if	you	don't	mind,	I	need	to	leave

											^

SyntaxError:	invalid	syntax

>>>	quit()

You	will	notice	that	the	error	is	different	for	the	first	two	incorrect	attempts.	The
second	 error	 is	 different	 because	 if	 is	 a	 reserved	 word	 and	 Python	 saw	 the
reserved	word	and	thought	we	were	trying	to	say	something	but	got	the	syntax	of
the	sentence	wrong.

The	proper	way	to	say	"good-bye"	to	Python	is	to	enter	quit()	at	the	interactive
chevron	>>>	 prompt.	 It	would	have	probably	 taken	you	quite	 a	while	 to	guess
that	one,	so	having	a	book	handy	probably	will	turn	out	to	be	helpful.

Terminology:	Interpreter	and	compiler

Python	 is	 a	 high-level	 language	 intended	 to	 be	 relatively	 straightforward	 for
humans	 to	 read	 and	write	 and	 for	 computers	 to	 read	 and	 process.	Other	 high-
level	languages	include	Java,	C++,	PHP,	Ruby,	Basic,	Perl,	JavaScript,	and	many
more.	The	 actual	 hardware	 inside	 the	Central	Processing	Unit	 (CPU)	does	 not
understand	any	of	these	high-level	languages.

The	CPU	understands	a	language	we	call	machine	language.	Machine	language
is	very	simple	and	frankly	very	tiresome	to	write	because	it	is	represented	all	in
zeros	and	ones:

001010001110100100101010000001111

11100110000011101010010101101101

...

Machine	 language	seems	quite	simple	on	 the	surface,	given	 that	 there	are	only
zeros	and	ones,	but	its	syntax	is	even	more	complex	and	far	more	intricate	than
Python.	 So	 very	 few	 programmers	 ever	 write	 machine	 language.	 Instead	 we
build	various	translators	to	allow	programmers	to	write	in	high-level	languages
like	Python	or	JavaScript	and	these	translators	convert	the	programs	to	machine
language	for	actual	execution	by	the	CPU.

Since	machine	language	is	tied	to	the	computer	hardware,	machine	language	is
not	portable	across	different	 types	of	hardware.	Programs	written	 in	high-level
languages	 can	 be	 moved	 between	 different	 computers	 by	 using	 a	 different
interpreter	 on	 the	 new	 machine	 or	 recompiling	 the	 code	 to	 create	 a	 machine
language	version	of	the	program	for	the	new	machine.

These	 programming	 language	 translators	 fall	 into	 two	 general	 categories:	 (1)
interpreters	and	(2)	compilers.

An	 interpreter	 reads	 the	 source	 code	 of	 the	 program	 as	 written	 by	 the
programmer,	 parses	 the	 source	 code,	 and	 interprets	 the	 instructions	 on	 the	 fly.
Python	 is	an	 interpreter	and	when	we	are	 running	Python	 interactively,	we	can
type	 a	 line	of	Python	 (a	 sentence)	 and	Python	processes	 it	 immediately	 and	 is
ready	for	us	to	type	another	line	of	Python.

Some	of	the	lines	of	Python	tell	Python	that	you	want	it	to	remember	some	value
for	 later.	We	need	to	pick	a	name	for	 that	value	 to	be	remembered	and	we	can
use	 that	symbolic	name	to	retrieve	 the	value	 later.	We	use	 the	 term	variable	 to
refer	to	the	labels	we	use	to	refer	to	this	stored	data.

>>>	x	=	6

>>>	print(x)

6

>>>	y	=	x	*	7

>>>	print(y)

42

>>>

In	this	example,	we	ask	Python	to	remember	the	value	six	and	use	the	label	x	so

we	can	retrieve	the	value	later.	We	verify	that	Python	has	actually	remembered
the	value	using	print.	Then	we	ask	Python	to	retrieve	x	and	multiply	it	by	seven
and	 put	 the	 newly	 computed	 value	 in	 y.	 Then	we	 ask	 Python	 to	 print	 out	 the
value	currently	in	y.

Even	 though	 we	 are	 typing	 these	 commands	 into	 Python	 one	 line	 at	 a	 time,
Python	 is	 treating	 them	 as	 an	 ordered	 sequence	 of	 statements	 with	 later
statements	able	to	retrieve	data	created	in	earlier	statements.	We	are	writing	our
first	simple	paragraph	with	four	sentences	in	a	logical	and	meaningful	order.

It	is	the	nature	of	an	interpreter	to	be	able	to	have	an	interactive	conversation	as
shown	above.	A	compiler	needs	 to	be	handed	 the	entire	program	 in	a	 file,	 and
then	 it	 runs	 a	 process	 to	 translate	 the	 high-level	 source	 code	 into	 machine
language	and	 then	 the	compiler	puts	 the	resulting	machine	 language	 into	a	 file
for	later	execution.

If	 you	 have	 a	 Windows	 system,	 often	 these	 executable	 machine	 language
programs	 have	 a	 suffix	 of	 ".exe"	 or	 ".dll"	 which	 stand	 for	 "executable"	 and
"dynamic	 link	 library"	respectively.	 In	Linux	and	Macintosh,	 there	 is	no	suffix
that	uniquely	marks	a	file	as	executable.

If	you	were	to	open	an	executable	file	in	a	text	editor,	it	would	look	completely
crazy	and	be	unreadable:

^?ELF^A^A^A^@^@^@^@^@^@^@^@^@^B^@^C^@^A^@^@^@\xa0\x82

^D^H4^@^@^@\x90^]^@^@^@^@^@^@4^@	^@^G^@(^@$^@!^@^F^@

^@^@4^@^@^@4\x80^D^H4\x80^D^H\xe0^@^@^@\xe0^@^@^@^E

^@^@^@^D^@^@^@^C^@^@^@^T^A^@^@^T\x81^D^H^T\x81^D^H^S

^@^@^@^S^@^@^@^D^@^@^@^A^@^@^@^A\^D^HQVhT\x83^D^H\xe8

....

It	 is	 not	 easy	 to	 read	 or	 write	 machine	 language,	 so	 it	 is	 nice	 that	 we	 have
interpreters	 and	 compilers	 that	 allow	 us	 to	 write	 in	 high-level	 languages	 like
Python	or	C.

Now	at	this	point	in	our	discussion	of	compilers	and	interpreters,	you	should	be
wondering	a	bit	about	 the	Python	 interpreter	 itself.	What	 language	 is	 it	written
in?	Is	it	written	in	a	compiled	language?	When	we	type	"python",	what	exactly	is
happening?

The	Python	 interpreter	 is	written	 in	 a	high-level	 language	called	 "C".	You	can

look	 at	 the	 actual	 source	 code	 for	 the	 Python	 interpreter	 by	 going	 to
www.python.org	 and	 working	 your	 way	 to	 their	 source	 code.	 So	 Python	 is	 a
program	itself	and	it	is	compiled	into	machine	code.	When	you	installed	Python
on	your	computer	(or	the	vendor	installed	it),	you	copied	a	machine-code	copy
of	the	translated	Python	program	onto	your	system.	In	Windows,	the	executable
machine	code	for	Python	itself	is	likely	in	a	file	with	a	name	like:

C:\Python35\python.exe

That	 is	 more	 than	 you	 really	 need	 to	 know	 to	 be	 a	 Python	 programmer,	 but
sometimes	it	pays	to	answer	those	little	nagging	questions	right	at	the	beginning.

Writing	a	program

Typing	commands	into	the	Python	interpreter	is	a	great	way	to	experiment	with
Python's	 features,	 but	 it	 is	 not	 recommended	 for	 solving	 more	 complex
problems.

When	 we	 want	 to	 write	 a	 program,	 we	 use	 a	 text	 editor	 to	 write	 the	 Python
instructions	 into	 a	 file,	which	 is	 called	 a	 script.	By	 convention,	Python	 scripts
have	names	that	end	with	.py.

To	execute	the	script,	you	have	to	tell	the	Python	interpreter	the	name	of	the	file.
In	a	command	window,	you	would	type	python	hello.py	as	follows:

$	cat	hello.py

print('Hello	world!')

$	python	hello.py

Hello	world!

The	"$"	is	the	operating	system	prompt,	and	the	"cat	hello.py"	is	showing	us	that
the	file	"hello.py"	has	a	one-line	Python	program	to	print	a	string.

We	 call	 the	 Python	 interpreter	 and	 tell	 it	 to	 read	 its	 source	 code	 from	 the	 file
"hello.py"	instead	of	prompting	us	for	lines	of	Python	code	interactively.

You	will	notice	 that	 there	was	no	need	 to	have	quit()	 at	 the	end	of	 the	Python
program	 in	 the	 file.	When	 Python	 is	 reading	 your	 source	 code	 from	 a	 file,	 it
knows	to	stop	when	it	reaches	the	end	of	the	file.

http://www.python.org

What	is	a	program?

The	definition	of	a	program	at	its	most	basic	is	a	sequence	of	Python	statements
that	 have	 been	 crafted	 to	 do	 something.	 Even	 our	 simple	 hello.py	 script	 is	 a
program.	 It	 is	 a	 one-line	 program	 and	 is	 not	 particularly	 useful,	 but	 in	 the
strictest	definition,	it	is	a	Python	program.

It	might	be	easiest	to	understand	what	a	program	is	by	thinking	about	a	problem
that	a	program	might	be	built	to	solve,	and	then	looking	at	a	program	that	would
solve	that	problem.

Lets	say	you	are	doing	Social	Computing	research	on	Facebook	posts	and	you
are	 interested	 in	 the	most	 frequently	used	word	 in	a	series	of	posts.	You	could
print	 out	 the	 stream	 of	 Facebook	 posts	 and	 pore	 over	 the	 text	 looking	 for	 the
most	common	word,	but	that	would	take	a	long	time	and	be	very	mistake	prone.
You	would	be	smart	 to	write	a	Python	program	 to	handle	 the	 task	quickly	and
accurately	so	you	can	spend	the	weekend	doing	something	fun.

For	example,	look	at	the	following	text	about	a	clown	and	a	car.	Look	at	the	text
and	figure	out	the	most	common	word	and	how	many	times	it	occurs.

the	clown	ran	after	the	car	and	the	car	ran	into	the	tent

and	the	tent	fell	down	on	the	clown	and	the	car

Then	 imagine	 that	 you	 are	 doing	 this	 task	 looking	 at	millions	 of	 lines	 of	 text.
Frankly	it	would	be	quicker	for	you	to	learn	Python	and	write	a	Python	program
to	count	the	words	than	it	would	be	to	manually	scan	the	words.

The	even	better	news	is	that	I	already	came	up	with	a	simple	program	to	find	the
most	common	word	in	a	text	file.	I	wrote	it,	tested	it,	and	now	I	am	giving	it	to
you	to	use	so	you	can	save	some	time.

name	=	input('Enter	file:')

handle	=	open(name,	'r')

counts	=	dict()

for	line	in	handle:

				words	=	line.split()

				for	word	in	words:

								counts[word]	=	counts.get(word,	0)	+	1

bigcount	=	None

bigword	=	None

for	word,	count	in	list(counts.items()):

				if	bigcount	is	None	or	count	>	bigcount:

								bigword	=	word

								bigcount	=	count

print(bigword,	bigcount)

#	Code:	http://www.py4e.com/code3/words.py

You	don't	even	need	to	know	Python	to	use	this	program.	You	will	need	to	get
through	 Chapter	 10	 of	 this	 book	 to	 fully	 understand	 the	 awesome	 Python
techniques	that	were	used	to	make	the	program.	You	are	the	end	user,	you	simply
use	 the	 program	 and	marvel	 at	 its	 cleverness	 and	 how	 it	 saved	 you	 so	 much
manual	effort.	You	simply	type	the	code	into	a	file	called	words.py	and	run	it	or
you	download	the	source	code	from	http://www.py4e.com/code3/	and	run	it.

This	is	a	good	example	of	how	Python	and	the	Python	language	are	acting	as	an
intermediary	between	you	(the	end	user)	and	me	(the	programmer).	Python	is	a
way	 for	 us	 to	 exchange	 useful	 instruction	 sequences	 (i.e.,	 programs)	 in	 a
common	 language	 that	 can	 be	 used	 by	 anyone	 who	 installs	 Python	 on	 their
computer.	So	neither	of	us	are	talking	to	Python,	instead	we	are	communicating
with	each	other	through	Python.

The	building	blocks	of	programs

In	 the	 next	 few	 chapters,	 we	 will	 learn	 more	 about	 the	 vocabulary,	 sentence
structure,	paragraph	structure,	and	story	structure	of	Python.	We	will	learn	about
the	 powerful	 capabilities	 of	 Python	 and	 how	 to	 compose	 those	 capabilities
together	to	create	useful	programs.

There	are	some	low-level	conceptual	patterns	that	we	use	to	construct	programs.
These	 constructs	 are	 not	 just	 for	 Python	 programs,	 they	 are	 part	 of	 every
programming	language	from	machine	language	up	to	the	high-level	languages.

input
Get	data	from	the	"outside	world".	This	might	be	reading	data	from	a	file,
or	 even	 some	 kind	 of	 sensor	 like	 a	 microphone	 or	 GPS.	 In	 our	 initial

http://www.py4e.com/code3/

programs,	our	input	will	come	from	the	user	typing	data	on	the	keyboard.
output

Display	 the	 results	 of	 the	 program	 on	 a	 screen	 or	 store	 them	 in	 a	 file	 or
perhaps	write	them	to	a	device	like	a	speaker	to	play	music	or	speak	text.

sequential	execution
Perform	statements	one	after	 another	 in	 the	order	 they	are	encountered	 in
the	script.

conditional	execution
Check	 for	 certain	 conditions	 and	 then	 execute	 or	 skip	 a	 sequence	 of
statements.

repeated	execution
Perform	some	set	of	statements	repeatedly,	usually	with	some	variation.

reuse
Write	a	set	of	instructions	once	and	give	them	a	name	and	then	reuse	those
instructions	as	needed	throughout	your	program.

It	sounds	almost	too	simple	to	be	true,	and	of	course	it	is	never	so	simple.	It	is
like	saying	 that	walking	 is	simply	"putting	one	 foot	 in	 front	of	 the	other".	The
"art"	 of	 writing	 a	 program	 is	 composing	 and	 weaving	 these	 basic	 elements
together	many	times	over	to	produce	something	that	is	useful	to	its	users.

The	word	counting	program	above	directly	uses	all	of	these	patterns	except	for
one.

What	could	possibly	go	wrong?

As	we	saw	in	our	earliest	conversations	with	Python,	we	must	communicate	very
precisely	when	we	write	 Python	 code.	 The	 smallest	 deviation	 or	mistake	will
cause	Python	to	give	up	looking	at	your	program.

Beginning	programmers	often	take	the	fact	that	Python	leaves	no	room	for	errors
as	evidence	that	Python	is	mean,	hateful,	and	cruel.	While	Python	seems	to	like
everyone	else,	Python	knows	them	personally	and	holds	a	grudge	against	them.
Because	of	this	grudge,	Python	takes	our	perfectly	written	programs	and	rejects
them	as	"unfit"	just	to	torment	us.

>>>	primt	'Hello	world!'

File	"<stdin>",	line	1

		primt	'Hello	world!'

																					^

SyntaxError:	invalid	syntax

>>>	primt	('Hello	world')

Traceback	(most	recent	call	last):

File	"<stdin>",	line	1,	in	<module>

NameError:	name	'primt'	is	not	defined

>>>	I	hate	you	Python!

File	"<stdin>",	line	1

		I	hate	you	Python!

							^

SyntaxError:	invalid	syntax

>>>	if	you	come	out	of	there,	I	would	teach	you	a	lesson

File	"<stdin>",	line	1

		if	you	come	out	of	there,	I	would	teach	you	a	lesson

												^

SyntaxError:	invalid	syntax

>>>

There	 is	 little	 to	 be	 gained	 by	 arguing	with	Python.	 It	 is	 just	 a	 tool.	 It	 has	 no
emotions	and	it	is	happy	and	ready	to	serve	you	whenever	you	need	it.	Its	error
messages	sound	harsh,	but	 they	are	 just	Python's	call	 for	help.	 It	has	 looked	at
what	you	typed,	and	it	simply	cannot	understand	what	you	have	entered.

Python	is	much	more	like	a	dog,	 loving	you	unconditionally,	having	a	few	key
words	that	 it	understands,	 looking	you	with	a	sweet	 look	on	its	face	(>>>),	and
waiting	 for	 you	 to	 say	 something	 it	 understands.	 When	 Python	 says
"SyntaxError:	 invalid	 syntax",	 it	 is	 simply	 wagging	 its	 tail	 and	 saying,	 "You
seemed	to	say	something	but	I	just	don't	understand	what	you	meant,	but	please
keep	talking	to	me	(>>>)."

As	your	programs	become	 increasingly	 sophisticated,	you	will	 encounter	 three
general	types	of	errors:

Syntax	errors
These	are	the	first	errors	you	will	make	and	the	easiest	to	fix.	A	syntax	error
means	that	you	have	violated	the	"grammar"	rules	of	Python.	Python	does
its	 best	 to	 point	 right	 at	 the	 line	 and	 character	 where	 it	 noticed	 it	 was
confused.	The	only	tricky	bit	of	syntax	errors	is	that	sometimes	the	mistake
that	 needs	 fixing	 is	 actually	 earlier	 in	 the	 program	 than	 where	 Python
noticed	it	was	confused.	So	the	line	and	character	that	Python	indicates	in	a

syntax	error	may	just	be	a	starting	point	for	your	investigation.
Logic	errors

A	logic	error	is	when	your	program	has	good	syntax	but	there	is	a	mistake
in	 the	order	of	 the	statements	or	perhaps	a	mistake	 in	how	 the	statements
relate	 to	 one	 another.	A	 good	 example	 of	 a	 logic	 error	might	 be,	 "take	 a
drink	 from	your	water	bottle,	put	 it	 in	your	backpack,	walk	 to	 the	 library,
and	then	put	the	top	back	on	the	bottle."

Semantic	errors
A	 semantic	 error	 is	 when	 your	 description	 of	 the	 steps	 to	 take	 is
syntactically	perfect	and	in	the	right	order,	but	there	is	simply	a	mistake	in
the	program.	The	program	is	perfectly	correct	but	it	does	not	do	what	you
intended	 for	 it	 to	 do.	 A	 simple	 example	 would	 be	 if	 you	 were	 giving	 a
person	 directions	 to	 a	 restaurant	 and	 said,	 "...when	 you	 reach	 the
intersection	with	the	gas	station,	turn	left	and	go	one	mile	and	the	restaurant
is	a	red	building	on	your	left."	Your	friend	is	very	late	and	calls	you	to	tell
you	that	they	are	on	a	farm	and	walking	around	behind	a	barn,	with	no	sign
of	a	restaurant.	Then	you	say	"did	you	turn	left	or	right	at	the	gas	station?"
and	 they	 say,	 "I	 followed	 your	 directions	 perfectly,	 I	 have	 them	 written
down,	it	says	turn	left	and	go	one	mile	at	the	gas	station."	Then	you	say,	"I
am	 very	 sorry,	 because	 while	 my	 instructions	 were	 syntactically	 correct,
they	sadly	contained	a	small	but	undetected	semantic	error.".

Again	 in	 all	 three	 types	 of	 errors,	 Python	 is	 merely	 trying	 its	 hardest	 to	 do
exactly	what	you	have	asked.

Debugging

When	 Python	 spits	 out	 an	 error	 or	 even	 when	 it	 gives	 you	 a	 result	 that	 is
different	from	what	you	had	intended,	then	begins	the	hunt	for	the	cause	of	the
error.	Debugging	 is	 the	process	of	 finding	 the	cause	of	 the	error	 in	your	code.
When	you	are	debugging	a	program,	and	especially	if	you	are	working	on	a	hard
bug,	there	are	four	things	to	try:

reading
Examine	your	code,	read	it	back	to	yourself,	and	check	that	it	says	what	you
meant	to	say.

running
Experiment	by	making	changes	and	running	different	versions.	Often	if	you

display	 the	 right	 thing	 at	 the	 right	 place	 in	 the	 program,	 the	 problem
becomes	 obvious,	 but	 sometimes	 you	 have	 to	 spend	 some	 time	 to	 build
scaffolding.

ruminating
Take	 some	 time	 to	 think!	 What	 kind	 of	 error	 is	 it:	 syntax,	 runtime,
semantic?	What	information	can	you	get	from	the	error	messages,	or	from
the	 output	 of	 the	 program?	What	 kind	 of	 error	 could	 cause	 the	 problem
you're	seeing?	What	did	you	change	last,	before	the	problem	appeared?

retreating
At	 some	 point,	 the	 best	 thing	 to	 do	 is	 back	 off,	 undoing	 recent	 changes,
until	you	get	back	to	a	program	that	works	and	that	you	understand.	Then
you	can	start	rebuilding.

Beginning	 programmers	 sometimes	 get	 stuck	 on	 one	 of	 these	 activities	 and
forget	the	others.	Finding	a	hard	bug	requires	reading,	running,	ruminating,	and
sometimes	retreating.	If	you	get	stuck	on	one	of	 these	activities,	 try	the	others.
Each	activity	comes	with	its	own	failure	mode.

For	 example,	 reading	 your	 code	might	 help	 if	 the	 problem	 is	 a	 typographical
error,	 but	 not	 if	 the	 problem	 is	 a	 conceptual	 misunderstanding.	 If	 you	 don't
understand	what	your	program	does,	you	can	read	it	100	times	and	never	see	the
error,	because	the	error	is	in	your	head.

Running	experiments	can	help,	especially	 if	you	run	small,	 simple	 tests.	But	 if
you	run	experiments	without	thinking	or	reading	your	code,	you	might	fall	into	a
pattern	 I	 call	 "random	 walk	 programming",	 which	 is	 the	 process	 of	 making
random	changes	until	the	program	does	the	right	thing.	Needless	to	say,	random
walk	programming	can	take	a	long	time.

You	have	to	take	time	to	think.	Debugging	is	like	an	experimental	science.	You
should	have	at	least	one	hypothesis	about	what	the	problem	is.	If	there	are	two	or
more	possibilities,	try	to	think	of	a	test	that	would	eliminate	one	of	them.

Taking	 a	 break	 helps	 with	 the	 thinking.	 So	 does	 talking.	 If	 you	 explain	 the
problem	 to	 someone	 else	 (or	 even	 to	 yourself),	 you	 will	 sometimes	 find	 the
answer	before	you	finish	asking	the	question.

But	even	the	best	debugging	techniques	will	fail	if	there	are	too	many	errors,	or
if	the	code	you	are	trying	to	fix	is	too	big	and	complicated.	Sometimes	the	best

option	 is	 to	 retreat,	 simplifying	 the	 program	 until	 you	 get	 to	 something	 that
works	and	that	you	understand.

Beginning	programmers	are	often	reluctant	to	retreat	because	they	can't	stand	to
delete	a	line	of	code	(even	if	it's	wrong).	If	it	makes	you	feel	better,	copy	your
program	into	another	file	before	you	start	stripping	it	down.	Then	you	can	paste
the	pieces	back	in	a	little	bit	at	a	time.

The	learning	journey

As	you	progress	through	the	rest	of	the	book,	don't	be	afraid	if	the	concepts	don't
seem	to	fit	together	well	the	first	time.	When	you	were	learning	to	speak,	it	was
not	a	problem	for	your	first	 few	years	 that	you	just	made	cute	gurgling	noises.
And	it	was	OK	if	it	took	six	months	for	you	to	move	from	simple	vocabulary	to
simple	sentences	and	took	5-6	more	years	to	move	from	sentences	to	paragraphs,
and	a	few	more	years	to	be	able	to	write	an	interesting	complete	short	story	on
your	own.

We	want	you	to	learn	Python	much	more	rapidly,	so	we	teach	it	all	at	the	same
time	over	the	next	few	chapters.	But	it	is	like	learning	a	new	language	that	takes
time	 to	 absorb	 and	 understand	 before	 it	 feels	 natural.	 That	 leads	 to	 some
confusion	as	we	visit	 and	 revisit	 topics	 to	 try	 to	get	you	 to	 see	 the	big	picture
while	we	are	defining	the	tiny	fragments	that	make	up	that	big	picture.	While	the
book	is	written	linearly,	and	if	you	are	taking	a	course	it	will	progress	in	a	linear
fashion,	 don't	 hesitate	 to	 be	 very	 nonlinear	 in	 how	you	 approach	 the	material.
Look	forwards	and	backwards	and	read	with	a	 light	 touch.	By	skimming	more
advanced	material	without	 fully	understanding	 the	details,	you	can	get	a	better
understanding	of	 the	 "why?"	of	 programming.	By	 reviewing	previous	material
and	even	redoing	earlier	exercises,	you	will	realize	that	you	actually	learned	a	lot
of	 material	 even	 if	 the	 material	 you	 are	 currently	 staring	 at	 seems	 a	 bit
impenetrable.

Usually	when	you	are	learning	your	first	programming	language,	there	are	a	few
wonderful	"Ah	Hah!"	moments	where	you	can	look	up	from	pounding	away	at
some	rock	with	a	hammer	and	chisel	and	step	away	and	see	that	you	are	indeed
building	a	beautiful	sculpture.

If	something	seems	particularly	hard,	there	is	usually	no	value	in	staying	up	all
night	and	staring	at	it.	Take	a	break,	take	a	nap,	have	a	snack,	explain	what	you

are	 having	 a	 problem	with	 to	 someone	 (or	 perhaps	 your	 dog),	 and	 then	 come
back	 to	 it	 with	 fresh	 eyes.	 I	 assure	 you	 that	 once	 you	 learn	 the	 programming
concepts	 in	 the	book	you	will	 look	back	and	see	that	 it	was	all	really	easy	and
elegant	and	it	simply	took	you	a	bit	of	time	to	absorb	it.

Glossary

bug
An	error	in	a	program.

central	processing	unit
The	heart	of	any	computer.	It	is	what	runs	the	software	that	we	write;	also
called	"CPU"	or	"the	processor".

compile
To	 translate	 a	 program	 written	 in	 a	 high-level	 language	 into	 a	 low-level
language	all	at	once,	in	preparation	for	later	execution.

high-level	language
A	 programming	 language	 like	 Python	 that	 is	 designed	 to	 be	 easy	 for
humans	to	read	and	write.

interactive	mode
A	way	of	using	the	Python	interpreter	by	typing	commands	and	expressions
at	the	prompt.

interpret
To	execute	a	program	in	a	high-level	language	by	translating	it	one	line	at	a
time.

low-level	language
A	 programming	 language	 that	 is	 designed	 to	 be	 easy	 for	 a	 computer	 to
execute;	also	called	"machine	code"	or	"assembly	language".

machine	code
The	 lowest-level	 language	 for	 software,	 which	 is	 the	 language	 that	 is
directly	executed	by	the	central	processing	unit	(CPU).

main	memory
Stores	 programs	 and	 data.	 Main	 memory	 loses	 its	 information	 when	 the
power	is	turned	off.

parse
To	examine	a	program	and	analyze	the	syntactic	structure.

portability
A	property	of	a	program	that	can	run	on	more	than	one	kind	of	computer.

print	function

An	instruction	 that	causes	 the	Python	interpreter	 to	display	a	value	on	 the
screen.

problem	solving
The	process	 of	 formulating	 a	 problem,	 finding	 a	 solution,	 and	 expressing
the	solution.

program
A	set	of	instructions	that	specifies	a	computation.

prompt
When	a	program	displays	a	message	and	pauses	for	 the	user	to	type	some
input	to	the	program.

secondary	memory
Stores	programs	and	data	and	retains	its	information	even	when	the	power
is	turned	off.	Generally	slower	than	main	memory.	Examples	of	secondary
memory	include	disk	drives	and	flash	memory	in	USB	sticks.

semantics
The	meaning	of	a	program.

semantic	error
An	 error	 in	 a	 program	 that	 makes	 it	 do	 something	 other	 than	 what	 the
programmer	intended.

source	code
A	program	in	a	high-level	language.

Exercises

Exercise	1:	What	is	the	function	of	the	secondary	memory	in	a	computer?

a)	Execute	all	of	the	computation	and	logic	of	the	program
b)	Retrieve	web	pages	over	the	Internet
c)	Store	information	for	the	long	term,	even	beyond	a	power	cycle
d)	Take	input	from	the	user

Exercise	2:	What	is	a	program?

Exercise	3:	What	is	the	difference	between	a	compiler	and	an	interpreter?

Exercise	4:	Which	of	the	following	contains	"machine	code"?

a)	The	Python	interpreter
b)	The	keyboard

c)	Python	source	file
d)	A	word	processing	document

Exercise	5:	What	is	wrong	with	the	following	code:

>>>	primt	'Hello	world!'

File	"<stdin>",	line	1

		primt	'Hello	world!'

																					^

SyntaxError:	invalid	syntax

>>>

Exercise	6:	Where	in	the	computer	is	a	variable	such	as	"x"	stored	after	the
following	Python	line	finishes?

x	=	123

a)	Central	processing	unit
b)	Main	Memory
c)	Secondary	Memory
d)	Input	Devices
e)	Output	Devices

Exercise	7:	What	will	the	following	program	print	out:

x	=	43

x	=	x	-	1

print(x)

a)	43
b)	42
c)	x	+	1
d)	Error	because	x	=	x	+	1	is	not	possible	mathematically

Exercise	 8:	 Explain	 each	 of	 the	 following	 using	 an	 example	 of	 a	 human
capability:	 (1)	 Central	 processing	 unit,	 (2)	 Main	 Memory,	 (3)	 Secondary
Memory,	 (4)	 Input	Device,	and	 (5)	Output	Device.	For	example,	"What	 is

the	human	equivalent	to	a	Central	Processing	Unit"?

Exercise	9:	How	do	you	fix	a	"Syntax	Error"?

1.	 http://xkcd.com/231/↩

http://xkcd.com/231/

Variables,	expressions,	and
statements
Values	and	types

A	 value	 is	 one	 of	 the	 basic	 things	 a	 program	 works	 with,	 like	 a	 letter	 or	 a
number.	The	values	we	have	seen	so	far	are	1,	2,	and	"Hello,	World!"

These	values	belong	to	different	types:	2	is	an	integer,	and	"Hello,	World!"	is	a
string,	so	called	because	it	contains	a	"string"	of	letters.	You	(and	the	interpreter)
can	identify	strings	because	they	are	enclosed	in	quotation	marks.

The	print	 statement	 also	works	 for	 integers.	We	use	 the	python	 command	 to
start	the	interpreter.

python

>>>	print(4)

4

If	you	are	not	sure	what	type	a	value	has,	the	interpreter	can	tell	you.

>>>	type('Hello,	World!')

<class	'str'>

>>>	type(17)

<class	'int'>

Not	surprisingly,	strings	belong	to	the	type	str	and	integers	belong	to	 the	type
int.	Less	obviously,	numbers	with	a	decimal	point	belong	to	a	type	called	float,
because	these	numbers	are	represented	in	a	format	called	floating	point.

>>>	type(3.2)

<class	'float'>

What	about	values	like	"17"	and	"3.2"?	They	look	like	numbers,	but	they	are	in
quotation	marks	like	strings.

>>>	type('17')

<class	'str'>

>>>	type('3.2')

<class	'str'>

They're	strings.

When	you	 type	a	 large	 integer,	you	might	be	 tempted	 to	use	commas	between
groups	of	three	digits,	as	in	1,000,000.	This	is	not	a	legal	integer	in	Python,	but	it
is	legal:

>>>	print(1,000,000)

1	0	0

Well,	 that's	 not	 what	 we	 expected	 at	 all!	 Python	 interprets	 1,000,000	 as	 a
comma-separated	sequence	of	integers,	which	it	prints	with	spaces	between.

This	is	the	first	example	we	have	seen	of	a	semantic	error:	the	code	runs	without
producing	an	error	message,	but	it	doesn't	do	the	"right"	thing.

Variables

One	of	 the	most	powerful	 features	of	a	programming	language	 is	 the	ability	 to
manipulate	variables.	A	variable	is	a	name	that	refers	to	a	value.

An	assignment	statement	creates	new	variables	and	gives	them	values:

>>>	message	=	'And	now	for	something	completely	different'

>>>	n	=	17

>>>	pi	=	3.1415926535897931

This	 example	 makes	 three	 assignments.	 The	 first	 assigns	 a	 string	 to	 a	 new
variable	named	message;	the	second	assigns	the	integer	17	to	n;	the	third	assigns
the	(approximate)	value	of	π	to	pi.

To	display	the	value	of	a	variable,	you	can	use	a	print	statement:

>>>	print(n)

17

>>>	print(pi)

3.141592653589793

The	type	of	a	variable	is	the	type	of	the	value	it	refers	to.

>>>	type(message)

<class	'str'>

>>>	type(n)

<class	'int'>

>>>	type(pi)

<class	'float'>

Variable	names	and	keywords

Programmers	generally	choose	names	for	their	variables	that	are	meaningful	and
document	what	the	variable	is	used	for.

Variable	 names	 can	 be	 arbitrarily	 long.	 They	 can	 contain	 both	 letters	 and
numbers,	but	they	cannot	start	with	a	number.	It	is	legal	to	use	uppercase	letters,
but	it	 is	a	good	idea	to	begin	variable	names	with	a	lowercase	letter	(you'll	see
why	later).

The	underscore	character	 (_)	can	appear	 in	a	name.	It	 is	often	used	 in	names
with	 multiple	 words,	 such	 as	 my_name	 or	 airspeed_of_unladen_swallow.
Variable	names	 can	 start	with	 an	underscore	 character,	 but	we	generally	 avoid
doing	this	unless	we	are	writing	library	code	for	others	to	use.

If	you	give	a	variable	an	illegal	name,	you	get	a	syntax	error:

>>>	76trombones	=	'big	parade'

SyntaxError:	invalid	syntax

>>>	more@	=	1000000

SyntaxError:	invalid	syntax

>>>	class	=	'Advanced	Theoretical	Zymurgy'

SyntaxError:	invalid	syntax

76trombones	is	illegal	because	it	begins	with	a	number.	more@	is	illegal	because
it	contains	an	illegal	character,	@.	But	what's	wrong	with	class?

It	 turns	 out	 that	 class	 is	 one	 of	 Python's	 keywords.	 The	 interpreter	 uses
keywords	to	recognize	the	structure	of	the	program,	and	they	cannot	be	used	as
variable	names.

Python	reserves	35	keywords:

and					continue		finally		is								raise

as						def							for						lambda				return

assert		del							from					None						True

async			elif						global			nonlocal		try

await			else						if							not							while

break			except				import			or								with

class			False					in							pass						yield

You	might	want	to	keep	this	list	handy.	If	the	interpreter	complains	about	one	of
your	variable	names	and	you	don't	know	why,	see	if	it	is	on	this	list.

Statements

A	statement	 is	a	unit	of	code	 that	 the	Python	 interpreter	can	execute.	We	have
seen	 two	 kinds	 of	 statements:	 print	 being	 an	 expression	 statement	 and
assignment.

When	you	 type	a	 statement	 in	 interactive	mode,	 the	 interpreter	executes	 it	 and
displays	the	result,	if	there	is	one.

A	 script	 usually	 contains	 a	 sequence	 of	 statements.	 If	 there	 is	 more	 than	 one
statement,	the	results	appear	one	at	a	time	as	the	statements	execute.

For	example,	the	script

print(1)

x	=	2

print(x)

produces	the	output

1

2

The	assignment	statement	produces	no	output.

Operators	and	operands

Operators	 are	 special	 symbols	 that	 represent	 computations	 like	 addition	 and
multiplication.	The	values	the	operator	is	applied	to	are	called	operands.

The	 operators	 +,	 -,	 *,	 /,	 and	 **	 perform	 addition,	 subtraction,	 multiplication,
division,	and	exponentiation,	as	in	the	following	examples:

20+32

hour-1

hour*60+minute

minute/60

5**2

(5+9)*(15-7)

There	has	been	a	change	in	the	division	operator	between	Python	2.x	and	Python
3.x.	In	Python	3.x,	the	result	of	this	division	is	a	floating	point	result:

>>>	minute	=	59

>>>	minute/60

0.9833333333333333

The	division	operator	in	Python	2.0	would	divide	two	integers	and	truncate	the
result	to	an	integer:

>>>	minute	=	59

>>>	minute/60

0

To	obtain	the	same	answer	in	Python	3.0	use	floored	(//	integer)	division.

>>>	minute	=	59

>>>	minute//60

0

In	Python	3.0	integer	division	functions	much	more	as	you	would	expect	if	you
entered	the	expression	on	a	calculator.

Expressions

An	expression	 is	a	combination	of	values,	variables,	and	operators.	A	value	all
by	itself	is	considered	an	expression,	and	so	is	a	variable,	so	the	following	are	all
legal	expressions	(assuming	that	the	variable	x	has	been	assigned	a	value):

17

x

x	+	17

If	 you	 type	 an	 expression	 in	 interactive	mode,	 the	 interpreter	 evaluates	 it	 and
displays	the	result:

>>>	1	+	1

2

But	in	a	script,	an	expression	all	by	itself	doesn't	do	anything!	This	is	a	common
source	of	confusion	for	beginners.

Exercise	 1:	Type	 the	 following	 statements	 in	 the	Python	 interpreter	 to	 see
what	they	do:

5

x	=	5

x	+	1

Order	of	operations

When	more	than	one	operator	appears	in	an	expression,	the	order	of	evaluation

depends	on	the	rules	of	precedence.	For	mathematical	operators,	Python	follows
mathematical	convention.	The	acronym	PEMDAS	 is	a	useful	way	to	remember
the	rules:

Parentheses	 have	 the	 highest	 precedence	 and	 can	 be	 used	 to	 force	 an
expression	 to	 evaluate	 in	 the	 order	 you	 want.	 Since	 expressions	 in
parentheses	are	evaluated	first,	2	*	(3-1)	is	4,	and	(1+1)**(5-2)	is	8.	You
can	also	use	parentheses	to	make	an	expression	easier	to	read,	as	in	(minute
*	100)	/	60,	even	if	it	doesn't	change	the	result.

Exponentiation	has	the	next	highest	precedence,	so	2**1+1	is	3,	not	4,	and
3*1**3	is	3,	not	27.

Multiplication	and	Division	have	the	same	precedence,	which	is	higher	than
Addition	and	Subtraction,	which	also	have	the	same	precedence.	So	2*3-1
is	5,	not	4,	and	6+4/2	is	8,	not	5.

Operators	with	the	same	precedence	are	evaluated	from	left	to	right.	So	the
expression	5-3-1	 is	 1,	 not	 3,	 because	 the	5-3	 happens	 first	 and	 then	1	 is
subtracted	from	2.

When	 in	 doubt,	 always	 put	 parentheses	 in	 your	 expressions	 to	make	 sure	 the
computations	are	performed	in	the	order	you	intend.

Modulus	operator

The	modulus	operator	works	on	integers	and	yields	the	remainder	when	the	first
operand	is	divided	by	the	second.	In	Python,	 the	modulus	operator	is	a	percent
sign	(%).	The	syntax	is	the	same	as	for	other	operators:

>>>	quotient	=	7	//	3

>>>	print(quotient)

2

>>>	remainder	=	7	%	3

>>>	print(remainder)

1

So	7	divided	by	3	is	2	with	1	left	over.

The	modulus	operator	turns	out	to	be	surprisingly	useful.	For	example,	you	can
check	whether	 one	number	 is	 divisible	 by	 another:	 if	x	%	y	 is	 zero,	 then	x	 is
divisible	by	y.

You	can	also	extract	the	right-most	digit	or	digits	from	a	number.	For	example,	x
%	10	yields	the	right-most	digit	of	x	(in	base	10).	Similarly,	x	%	100	yields	the
last	two	digits.

String	operations

The	 +	 operator	 works	 with	 strings,	 but	 it	 is	 not	 addition	 in	 the	 mathematical
sense.	 Instead	 it	 performs	 concatenation,	 which	 means	 joining	 the	 strings	 by
linking	them	end	to	end.	For	example:

>>>	first	=	10

>>>	second	=	15

>>>	print(first+second)

25

>>>	first	=	'100'

>>>	second	=	'150'

>>>	print(first	+	second)

100150

The	*	operator	also	works	with	strings	by	multiplying	the	content	of	a	string	by
an	integer.	For	example:

>>>	first	=	'Test	'

>>>	second	=	3

>>>	print(first	*	second)

Test	Test	Test

Asking	the	user	for	input

Sometimes	we	would	like	to	take	the	value	for	a	variable	from	the	user	via	their
keyboard.	Python	provides	a	built-in	function	called	input	that	gets	input	from
the	keyboard1.	When	this	function	is	called,	the	program	stops	and	waits	for	the
user	 to	 type	 something.	When	 the	 user	 presses	Return	 or	 Enter,	 the	 program

resumes	and	input	returns	what	the	user	typed	as	a	string.

>>>	inp	=	input()

Some	silly	stuff

>>>	print(inp)

Some	silly	stuff

Before	getting	input	from	the	user,	it	is	a	good	idea	to	print	a	prompt	telling	the
user	what	 to	 input.	You	can	pass	 a	 string	 to	input	 to	 be	displayed	 to	 the	user
before	pausing	for	input:

>>>	name	=	input('What	is	your	name?\n')

What	is	your	name?

Chuck

>>>	print(name)

Chuck

The	sequence	\n	at	the	end	of	the	prompt	represents	a	newline,	which	is	a	special
character	that	causes	a	line	break.	That's	why	the	user's	input	appears	below	the
prompt.

If	you	expect	the	user	to	type	an	integer,	you	can	try	to	convert	the	return	value
to	int	using	the	int()	function:

>>>	prompt	=	'What...is	the	airspeed	velocity	of	an	unladen	swallow?

>>>	speed	=	input(prompt)

What...is	the	airspeed	velocity	of	an	unladen	swallow?

17

>>>	int(speed)

17

>>>	int(speed)	+	5

22

But	if	the	user	types	something	other	than	a	string	of	digits,	you	get	an	error:

>>>	speed	=	input(prompt)

What...is	the	airspeed	velocity	of	an	unladen	swallow?

What	do	you	mean,	an	African	or	a	European	swallow?

>>>	int(speed)

ValueError:	invalid	literal	for	int()	with	base	10:

We	will	see	how	to	handle	this	kind	of	error	later.

Comments

As	programs	get	bigger	and	more	complicated,	 they	get	more	difficult	 to	 read.
Formal	 languages	are	dense,	and	 it	 is	often	difficult	 to	 look	at	a	piece	of	code
and	figure	out	what	it	is	doing,	or	why.

For	 this	 reason,	 it	 is	 a	 good	 idea	 to	 add	 notes	 to	 your	 programs	 to	 explain	 in
natural	 language	what	 the	program	 is	doing.	These	notes	are	called	comments,
and	in	Python	they	start	with	the	#	symbol:

#	compute	the	percentage	of	the	hour	that	has	elapsed

percentage	=	(minute	*	100)	/	60

In	this	case,	the	comment	appears	on	a	line	by	itself.	You	can	also	put	comments
at	the	end	of	a	line:

percentage	=	(minute	*	100)	/	60					#	percentage	of	an	hour

Everything	from	the	#	 to	 the	end	of	 the	 line	 is	 ignored;	 it	has	no	effect	on	 the
program.

Comments	 are	 most	 useful	 when	 they	 document	 non-obvious	 features	 of	 the
code.	 It	 is	 reasonable	 to	 assume	 that	 the	 reader	 can	 figure	 out	what	 the	 code
does;	it	is	much	more	useful	to	explain	why.

This	comment	is	redundant	with	the	code	and	useless:

v	=	5					#	assign	5	to	v

This	comment	contains	useful	information	that	is	not	in	the	code:

v	=	5					#	velocity	in	meters/second.

Good	 variable	 names	 can	 reduce	 the	 need	 for	 comments,	 but	 long	 names	 can
make	complex	expressions	hard	to	read,	so	there	is	a	trade-off.

Choosing	mnemonic	variable	names

As	long	as	you	follow	the	simple	rules	of	variable	naming,	and	avoid	reserved
words,	you	have	a	lot	of	choice	when	you	name	your	variables.	In	the	beginning,
this	choice	can	be	confusing	both	when	you	read	a	program	and	when	you	write
your	own	programs.	For	example,	the	following	three	programs	are	identical	in
terms	of	what	they	accomplish,	but	very	different	when	you	read	them	and	try	to
understand	them.

a	=	35.0

b	=	12.50

c	=	a	*	b

print(c)

hours	=	35.0

rate	=	12.50

pay	=	hours	*	rate

print(pay)

x1q3z9ahd	=	35.0

x1q3z9afd	=	12.50

x1q3p9afd	=	x1q3z9ahd	*	x1q3z9afd

print(x1q3p9afd)

The	Python	interpreter	sees	all	 three	of	these	programs	as	exactly	 the	same	but
humans	see	and	understand	these	programs	quite	differently.	Humans	will	most
quickly	 understand	 the	 intent	 of	 the	 second	 program	 because	 the	 programmer
has	 chosen	variable	 names	 that	 reflect	 their	 intent	 regarding	what	 data	will	 be
stored	in	each	variable.

We	 call	 these	wisely	 chosen	 variable	 names	 "mnemonic	 variable	 names".	 The
word	mnemonic2	means	"memory	aid".	We	choose	mnemonic	variable	names	to
help	us	remember	why	we	created	the	variable	in	the	first	place.

While	this	all	sounds	great,	and	it	is	a	very	good	idea	to	use	mnemonic	variable
names,	 mnemonic	 variable	 names	 can	 get	 in	 the	 way	 of	 a	 beginning
programmer's	 ability	 to	 parse	 and	 understand	 code.	 This	 is	 because	 beginning
programmers	have	not	yet	memorized	the	reserved	words	(there	are	only	35	of
them)	and	sometimes	variables	with	names	that	are	too	descriptive	start	to	look
like	part	of	the	language	and	not	just	well-chosen	variable	names.

Take	 a	 quick	 look	 at	 the	 following	 Python	 sample	 code	 which	 loops	 through
some	data.	We	will	cover	loops	soon,	but	for	now	try	to	just	puzzle	through	what
this	means:

for	word	in	words:

				print(word)

What	 is	happening	here?	Which	of	 the	 tokens	 (for,	word,	 in,	etc.)	are	 reserved
words	 and	 which	 are	 just	 variable	 names?	 Does	 Python	 understand	 at	 a
fundamental	 level	 the	 notion	 of	 words?	 Beginning	 programmers	 have	 trouble
separating	what	 parts	 of	 the	 code	must	 be	 the	 same	 as	 this	 example	 and	what
parts	of	the	code	are	simply	choices	made	by	the	programmer.

The	following	code	is	equivalent	to	the	above	code:

for	slice	in	pizza:

				print(slice)

It	 is	easier	 for	 the	beginning	programmer	 to	 look	at	 this	code	and	know	which
parts	are	reserved	words	defined	by	Python	and	which	parts	are	simply	variable
names	 chosen	 by	 the	 programmer.	 It	 is	 pretty	 clear	 that	 Python	 has	 no
fundamental	understanding	of	pizza	and	slices	and	the	fact	that	a	pizza	consists
of	a	set	of	one	or	more	slices.

But	if	our	program	is	truly	about	reading	data	and	looking	for	words	in	the	data,
pizza	 and	 slice	 are	 very	 un-mnemonic	 variable	 names.	 Choosing	 them	 as
variable	names	distracts	from	the	meaning	of	the	program.

After	 a	 pretty	 short	 period	of	 time,	 you	will	 know	 the	most	 common	 reserved
words	and	you	will	start	to	see	the	reserved	words	jumping	out	at	you:

for	word	in	words:

				print(word)

The	parts	of	the	code	that	are	defined	by	Python	(for,	in,	print,	and	:)	are	 in
bold	 and	 the	 programmer-chosen	 variables	 (word	 and	 words)	 are	 not	 in	 bold.
Many	 text	 editors	 are	 aware	 of	 Python	 syntax	 and	 will	 color	 reserved	 words
differently	to	give	you	clues	to	keep	your	variables	and	reserved	words	separate.
After	 a	while	 you	will	 begin	 to	 read	 Python	 and	 quickly	 determine	what	 is	 a
variable	and	what	is	a	reserved	word.

Debugging

At	this	point,	the	syntax	error	you	are	most	likely	to	make	is	an	illegal	variable
name,	 like	class	 and	yield,	which	 are	keywords,	 or	odd~job	 and	US$,	 which
contain	illegal	characters.

If	you	put	a	space	in	a	variable	name,	Python	thinks	it	is	two	operands	without
an	operator:

>>>	bad	name	=	5

SyntaxError:	invalid	syntax

>>>	month	=	09

		File	"<stdin>",	line	1

				month	=	09

													^

SyntaxError:	invalid	token

For	 syntax	 errors,	 the	 error	 messages	 don't	 help	 much.	 The	 most	 common
messages	 are	 SyntaxError:	 invalid	 syntax	 and	 SyntaxError:	 invalid

token,	neither	of	which	is	very	informative.

The	 runtime	 error	 you	 are	most	 likely	 to	make	 is	 a	 "use	 before	 def;"	 that	 is,
trying	to	use	a	variable	before	you	have	assigned	a	value.	This	can	happen	if	you
spell	a	variable	name	wrong:

>>>	principal	=	327.68

>>>	interest	=	principle	*	rate

NameError:	name	'principle'	is	not	defined

Variables	names	are	case	sensitive,	so	LaTeX	is	not	the	same	as	latex.

At	this	point,	the	most	likely	cause	of	a	semantic	error	is	the	order	of	operations.
For	example,	to	evaluate	1/2π,	you	might	be	tempted	to	write

>>>	1.0	/	2.0	*	pi

But	the	division	happens	first,	so	you	would	get	π/2,	which	is	not	the	same	thing!
There	is	no	way	for	Python	to	know	what	you	meant	to	write,	so	in	this	case	you
don't	get	an	error	message;	you	just	get	the	wrong	answer.

Glossary

assignment
A	statement	that	assigns	a	value	to	a	variable.

concatenate
To	join	two	operands	end	to	end.

comment
Information	 in	a	program	that	 is	meant	 for	other	programmers	 (or	anyone
reading	the	source	code)	and	has	no	effect	on	the	execution	of	the	program.

evaluate
To	simplify	an	expression	by	performing	the	operations	in	order	to	yield	a
single	value.

expression
A	combination	of	 variables,	 operators,	 and	values	 that	 represents	 a	 single
result	value.

floating	point
A	type	that	represents	numbers	with	fractional	parts.

integer
A	type	that	represents	whole	numbers.

keyword
A	 reserved	 word	 that	 is	 used	 by	 the	 compiler	 to	 parse	 a	 program;	 you
cannot	use	keywords	like	if,	def,	and	while	as	variable	names.

mnemonic
A	 memory	 aid.	 We	 often	 give	 variables	 mnemonic	 names	 to	 help	 us
remember	what	is	stored	in	the	variable.

modulus	operator
An	 operator,	 denoted	with	 a	 percent	 sign	 (%),	 that	works	 on	 integers	 and
yields	the	remainder	when	one	number	is	divided	by	another.

operand
One	of	the	values	on	which	an	operator	operates.

operator
A	 special	 symbol	 that	 represents	 a	 simple	 computation	 like	 addition,
multiplication,	or	string	concatenation.

rules	of	precedence
The	 set	 of	 rules	 governing	 the	 order	 in	 which	 expressions	 involving
multiple	operators	and	operands	are	evaluated.

statement
A	 section	 of	 code	 that	 represents	 a	 command	 or	 action.	 So	 far,	 the
statements	we	have	seen	are	assignments	and	print	expression	statement.

string
A	type	that	represents	sequences	of	characters.

type
A	category	of	values.	The	types	we	have	seen	so	far	are	integers	(type	int),
floating-point	numbers	(type	float),	and	strings	(type	str).

value
One	 of	 the	 basic	 units	 of	 data,	 like	 a	 number	 or	 string,	 that	 a	 program
manipulates.

variable
A	name	that	refers	to	a	value.

Exercises

Exercise	 2:	Write	 a	 program	 that	 uses	 input	 to	 prompt	 a	 user	 for	 their
name	and	then	welcomes	them.

Enter	your	name:	Chuck

Hello	Chuck

Exercise	3:	Write	a	program	to	prompt	the	user	for	hours	and	rate	per	hour
to	compute	gross	pay.

Enter	Hours:	35

Enter	Rate:	2.75

Pay:	96.25

We	 won't	 worry	 about	 making	 sure	 our	 pay	 has	 exactly	 two	 digits	 after	 the
decimal	place	for	now.	If	you	want,	you	can	play	with	the	built-in	Python	round
function	to	properly	round	the	resulting	pay	to	two	decimal	places.

Exercise	4:	Assume	that	we	execute	the	following	assignment	statements:

width	=	17

height	=	12.0

For	each	of	the	following	expressions,	write	the	value	of	the	expression	and	the
type	(of	the	value	of	the	expression).

1.	 width//2

2.	 width/2.0

3.	 height/3

4.	 1	+	2	*	5

Use	the	Python	interpreter	to	check	your	answers.

Exercise	 5:	 Write	 a	 program	 which	 prompts	 the	 user	 for	 a	 Celsius
temperature,	 convert	 the	 temperature	 to	 Fahrenheit,	 and	 print	 out	 the
converted	temperature.

1.	 In	Python	2.0,	this	function	was	named	raw_input.↩

2.	 See	https://en.wikipedia.org/wiki/Mnemonic	for	an	extended	description	of
the	word	"mnemonic".↩

https://en.wikipedia.org/wiki/Mnemonic

Conditional	execution
Boolean	expressions

A	boolean	expression	is	an	expression	that	is	either	true	or	false.	The	following
examples	use	the	operator	==,	which	compares	two	operands	and	produces	True
if	they	are	equal	and	False	otherwise:

>>>	5	==	5

True

>>>	5	==	6

False

True	 and	 False	 are	 special	 values	 that	 belong	 to	 the	 class	 bool;	 they	 are	 not
strings:

>>>	type(True)

<class	'bool'>

>>>	type(False)

<class	'bool'>

The	==	operator	is	one	of	the	comparison	operators;	the	others	are:

x	!=	y															#	x	is	not	equal	to	y

x	>	y																#	x	is	greater	than	y

x	<	y																#	x	is	less	than	y

x	>=	y															#	x	is	greater	than	or	equal	to	y

x	<=	y															#	x	is	less	than	or	equal	to	y

x	is	y															#	x	is	the	same	as	y

x	is	not	y											#	x	is	not	the	same	as	y

Although	these	operations	are	probably	familiar	to	you,	the	Python	symbols	are
different	 from	 the	mathematical	 symbols	 for	 the	 same	 operations.	 A	 common
error	 is	 to	 use	 a	 single	 equal	 sign	 (=)	 instead	 of	 a	 double	 equal	 sign	 (==).
Remember	 that	 =	 is	 an	 assignment	 operator	 and	 ==	 is	 a	 comparison	 operator.

There	is	no	such	thing	as	=<	or	=>.

Logical	operators

There	are	three	logical	operators:	and,	or,	and	not.	The	semantics	(meaning)	of
these	operators	is	similar	to	their	meaning	in	English.	For	example,

x	>	0	and	x	<	10

is	true	only	if	x	is	greater	than	0	and	less	than	10.

n%2	==	0	or	n%3	==	0	is	true	if	either	of	 the	conditions	is	 true,	 that	 is,	 if	 the
number	is	divisible	by	2	or	3.

Finally,	the	not	operator	negates	a	boolean	expression,	so	not	(x	>	y)	is	true	if
x	>	y	is	false;	that	is,	if	x	is	less	than	or	equal	to	y.

Strictly	 speaking,	 the	 operands	 of	 the	 logical	 operators	 should	 be	 boolean
expressions,	but	Python	is	not	very	strict.	Any	nonzero	number	is	interpreted	as
"true."

>>>	17	and	True

True

This	 flexibility	 can	be	useful,	 but	 there	 are	 some	 subtleties	 to	 it	 that	might	 be
confusing.	You	might	want	to	avoid	it	until	you	are	sure	you	know	what	you	are
doing.

Conditional	execution

In	order	 to	write	 useful	 programs,	we	 almost	 always	need	 the	 ability	 to	 check
conditions	 and	 change	 the	 behavior	 of	 the	 program	 accordingly.	 Conditional
statements	give	us	this	ability.	The	simplest	form	is	the	if	statement:

if	x	>	0	:

				print('x	is	positive')

The	boolean	expression	after	the	if	statement	is	called	the	condition.	We	end	the
if	statement	with	a	colon	character	(:)	and	the	line(s)	after	the	if	statement	are
indented.

x	>	0

print(‘x	is	postitive’)

Yes

If	Logic

If	the	logical	condition	is	true,	then	the	indented	statement	gets	executed.	If	the
logical	condition	is	false,	the	indented	statement	is	skipped.

if	statements	have	the	same	structure	as	function	definitions	or	for	loops1.	The
statement	consists	of	a	header	line	that	ends	with	the	colon	character	(:)	followed
by	 an	 indented	 block.	 Statements	 like	 this	 are	 called	 compound	 statements
because	they	stretch	across	more	than	one	line.

There	 is	no	 limit	on	 the	number	of	statements	 that	can	appear	 in	 the	body,	but
there	 must	 be	 at	 least	 one.	 Occasionally,	 it	 is	 useful	 to	 have	 a	 body	 with	 no
statements	 (usually	as	 a	place	holder	 for	 code	you	haven't	written	yet).	 In	 that
case,	you	can	use	the	pass	statement,	which	does	nothing.

if	x	<	0	:

				pass										#	need	to	handle	negative	values!

If	 you	 enter	 an	if	 statement	 in	 the	Python	 interpreter,	 the	 prompt	will	 change
from	three	chevrons	to	three	dots	to	indicate	you	are	in	the	middle	of	a	block	of
statements,	as	shown	below:

>>>	x	=	3

>>>	if	x	<	10:

...				print('Small')

...

Small

>>>

When	using	the	Python	interpreter,	you	must	 leave	a	blank	line	at	 the	end	of	a
block,	otherwise	Python	will	return	an	error:

>>>	x	=	3

>>>	if	x	<	10:

...				print('Small')

...	print('Done')

		File	"<stdin>",	line	3

				print('Done')

								^

SyntaxError:	invalid	syntax

A	blank	 line	at	 the	end	of	a	block	of	statements	 is	not	necessary	when	writing
and	executing	a	script,	but	it	may	improve	readability	of	your	code.

Alternative	execution

A	second	 form	of	 the	if	 statement	 is	alternative	execution,	 in	which	 there	 are
two	 possibilities	 and	 the	 condition	 determines	 which	 one	 gets	 executed.	 The
syntax	looks	like	this:

if	x%2	==	0	:

				print('x	is	even')

else	:

				print('x	is	odd')

If	the	remainder	when	x	is	divided	by	2	is	0,	then	we	know	that	x	is	even,	and	the
program	displays	a	message	to	that	effect.	If	the	condition	is	false,	the	second	set
of	statements	is	executed.

x%2	==	0

print(‘x	is	even’)

Yes

print(‘x	is	odd’)

No

If-Then-Else	Logic

Since	 the	condition	must	either	be	 true	or	 false,	exactly	one	of	 the	alternatives
will	be	executed.	The	alternatives	are	called	branches,	because	they	are	branches
in	the	flow	of	execution.

Chained	conditionals

Sometimes	 there	 are	 more	 than	 two	 possibilities	 and	 we	 need	more	 than	 two
branches.	One	way	to	express	a	computation	like	that	is	a	chained	conditional:

if	x	<	y:

				print('x	is	less	than	y')

elif	x	>	y:

				print('x	is	greater	than	y')

else:

				print('x	and	y	are	equal')

elif	is	an	abbreviation	of	"else	if."	Again,	exactly	one	branch	will	be	executed.

x	<	y print(‘less’)
Yes

x	>	y print	(‘greater’)
Yes

print(‘equal’)

If-Then-ElseIf	Logic

There	is	no	limit	on	the	number	of	elif	statements.	If	there	is	an	else	clause,	it
has	to	be	at	the	end,	but	there	doesn't	have	to	be	one.

if	choice	==	'a':

				print('Bad	guess')

elif	choice	==	'b':

				print('Good	guess')

elif	choice	==	'c':

				print('Close,	but	not	correct')

Each	condition	is	checked	in	order.	If	the	first	is	false,	the	next	is	checked,	and
so	 on.	 If	 one	 of	 them	 is	 true,	 the	 corresponding	 branch	 executes,	 and	 the
statement	ends.	Even	if	more	than	one	condition	is	true,	only	the	first	true	branch
executes.

Nested	conditionals

One	 conditional	 can	 also	 be	 nested	within	 another.	We	 could	 have	written	 the
three-branch	example	like	this:

if	x	==	y:

				print('x	and	y	are	equal')

else:

				if	x	<	y:

								print('x	is	less	than	y')

				else:

								print('x	is	greater	than	y')

The	outer	conditional	contains	two	branches.	The	first	branch	contains	a	simple
statement.	 The	 second	 branch	 contains	 another	 if	 statement,	 which	 has	 two
branches	of	 its	own.	Those	 two	branches	 are	both	 simple	 statements,	 although
they	could	have	been	conditional	statements	as	well.

x	==	y
No

print(‘equal’)

Yes

x	<	y

print’‘greater’)

No

print(‘less’)

Yes

Nested	If	Statements

Although	the	indentation	of	the	statements	makes	the	structure	apparent,	nested
conditionals	become	difficult	to	read	very	quickly.	In	general,	it	is	a	good	idea	to
avoid	them	when	you	can.

Logical	operators	often	provide	a	way	to	simplify	nested	conditional	statements.

For	example,	we	can	rewrite	the	following	code	using	a	single	conditional:

if	0	<	x:

				if	x	<	10:

								print('x	is	a	positive	single-digit	number.')

The	print	statement	is	executed	only	if	we	make	it	past	both	conditionals,	so	we
can	get	the	same	effect	with	the	and	operator:

if	0	<	x	and	x	<	10:

				print('x	is	a	positive	single-digit	number.')

Catching	exceptions	using	try	and	except

Earlier	we	saw	a	code	segment	where	we	used	 the	input	and	int	 functions	 to
read	 and	 parse	 an	 integer	 number	 entered	 by	 the	 user.	 We	 also	 saw	 how
treacherous	doing	this	could	be:

>>>	prompt	=	"What	is	the	air	velocity	of	an	unladen	swallow?\n"

>>>	speed	=	input(prompt)

What	is	the	air	velocity	of	an	unladen	swallow?

What	do	you	mean,	an	African	or	a	European	swallow?

>>>	int(speed)

ValueError:	invalid	literal	for	int()	with	base	10:

>>>

When	we	are	executing	these	statements	in	the	Python	interpreter,	we	get	a	new
prompt	from	the	interpreter,	think	"oops",	and	move	on	to	our	next	statement.

However	 if	 you	 place	 this	 code	 in	 a	 Python	 script	 and	 this	 error	 occurs,	 your
script	 immediately	 stops	 in	 its	 tracks	with	 a	 traceback.	 It	 does	not	 execute	 the
following	statement.

Here	 is	 a	 sample	 program	 to	 convert	 a	 Fahrenheit	 temperature	 to	 a	 Celsius
temperature:

inp	=	input('Enter	Fahrenheit	Temperature:	')

fahr	=	float(inp)

cel	=	(fahr	-	32.0)	*	5.0	/	9.0

print(cel)

#	Code:	http://www.py4e.com/code3/fahren.py

If	 we	 execute	 this	 code	 and	 give	 it	 invalid	 input,	 it	 simply	 fails	 with	 an
unfriendly	error	message:

python	fahren.py

Enter	Fahrenheit	Temperature:72

22.22222222222222

python	fahren.py

Enter	Fahrenheit	Temperature:fred

Traceback	(most	recent	call	last):

		File	"fahren.py",	line	2,	in	<module>

				fahr	=	float(inp)

ValueError:	could	not	convert	string	to	float:	'fred'

There	is	a	conditional	execution	structure	built	into	Python	to	handle	these	types
of	 expected	 and	 unexpected	 errors	 called	 "try	 /	 except".	 The	 idea	 of	 try	 and
except	 is	 that	 you	 know	 that	 some	 sequence	 of	 instruction(s)	 may	 have	 a
problem	and	you	want	to	add	some	statements	to	be	executed	if	an	error	occurs.
These	extra	statements	(the	except	block)	are	ignored	if	there	is	no	error.

You	can	think	of	the	try	and	except	feature	in	Python	as	an	"insurance	policy"
on	a	sequence	of	statements.

We	can	rewrite	our	temperature	converter	as	follows:

inp	=	input('Enter	Fahrenheit	Temperature:')

try:

				fahr	=	float(inp)

				cel	=	(fahr	-	32.0)	*	5.0	/	9.0

				print(cel)

except:

				print('Please	enter	a	number')

#	Code:	http://www.py4e.com/code3/fahren2.py

Python	 starts	 by	 executing	 the	 sequence	 of	 statements	 in	 the	 try	 block.	 If	 all

goes	well,	it	skips	the	except	block	and	proceeds.	If	an	exception	occurs	in	the
try	 block,	 Python	 jumps	 out	 of	 the	 try	 block	 and	 executes	 the	 sequence	 of
statements	in	the	except	block.

python	fahren2.py

Enter	Fahrenheit	Temperature:72

22.22222222222222

python	fahren2.py

Enter	Fahrenheit	Temperature:fred

Please	enter	a	number

Handling	an	exception	with	a	try	statement	is	called	catching	an	exception.	 In
this	example,	the	except	clause	prints	an	error	message.	In	general,	catching	an
exception	gives	you	a	chance	to	fix	the	problem,	or	try	again,	or	at	least	end	the
program	gracefully.

Short-circuit	evaluation	of	logical	expressions

When	Python	is	processing	a	logical	expression	such	as	x	>=	2	and	(x/y)	>	2,
it	evaluates	the	expression	from	left	to	right.	Because	of	the	definition	of	and,	if
x	is	less	than	2,	the	expression	x	>=	2	is	False	and	so	the	whole	expression	is
False	regardless	of	whether	(x/y)	>	2	evaluates	to	True	or	False.

When	Python	detects	that	there	is	nothing	to	be	gained	by	evaluating	the	rest	of	a
logical	expression,	it	stops	its	evaluation	and	does	not	do	the	computations	in	the
rest	of	the	logical	expression.	When	the	evaluation	of	a	logical	expression	stops
because	 the	 overall	 value	 is	 already	 known,	 it	 is	 called	 short-circuiting	 the
evaluation.

While	this	may	seem	like	a	fine	point,	the	short-circuit	behavior	leads	to	a	clever
technique	called	the	guardian	pattern.	Consider	the	following	code	sequence	in
the	Python	interpreter:

>>>	x	=	6

>>>	y	=	2

>>>	x	>=	2	and	(x/y)	>	2

True

>>>	x	=	1

>>>	y	=	0

>>>	x	>=	2	and	(x/y)	>	2

False

>>>	x	=	6

>>>	y	=	0

>>>	x	>=	2	and	(x/y)	>	2

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ZeroDivisionError:	division	by	zero

>>>

The	 third	 calculation	 failed	 because	 Python	 was	 evaluating	 (x/y)	 and	 y	 was
zero,	which	causes	a	runtime	error.	But	the	first	and	the	second	examples	did	not
fail	because	in	the	first	calculation	y	was	non	zero	and	in	the	second	one	the	first
part	of	these	expressions	x	>=	2	evaluated	to	False	so	the	(x/y)	was	not	ever
executed	due	to	the	short-circuit	rule	and	there	was	no	error.

We	can	construct	the	logical	expression	to	strategically	place	a	guard	evaluation
just	before	the	evaluation	that	might	cause	an	error	as	follows:

>>>	x	=	1

>>>	y	=	0

>>>	x	>=	2	and	y	!=	0	and	(x/y)	>	2

False

>>>	x	=	6

>>>	y	=	0

>>>	x	>=	2	and	y	!=	0	and	(x/y)	>	2

False

>>>	x	>=	2	and	(x/y)	>	2	and	y	!=	0

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ZeroDivisionError:	division	by	zero

>>>

In	the	first	logical	expression,	x	>=	2	is	False	so	the	evaluation	stops	at	the	and.
In	 the	 second	 logical	 expression,	x	>=	2	 is	True	 but	 y	 !=	 0	 is	 False	 so	we
never	reach	(x/y).

In	the	third	logical	expression,	the	y	!=	0	is	after	the	(x/y)	calculation	so	 the
expression	fails	with	an	error.

In	the	second	expression,	we	say	that	y	!=	0	acts	as	a	guard	 to	 insure	 that	we
only	execute	(x/y)	if	y	is	non-zero.

Debugging

The	 traceback	 Python	 displays	 when	 an	 error	 occurs	 contains	 a	 lot	 of
information,	but	it	can	be	overwhelming.	The	most	useful	parts	are	usually:

What	kind	of	error	it	was,	and

Where	it	occurred.

Syntax	errors	are	usually	easy	to	find,	but	 there	are	a	few	gotchas.	Whitespace
errors	 can	 be	 tricky	 because	 spaces	 and	 tabs	 are	 invisible	 and	we	 are	 used	 to
ignoring	them.

>>>	x	=	5

>>>		y	=	6

		File	"<stdin>",	line	1

				y	=	6

				^

IndentationError:	unexpected	indent

In	this	example,	the	problem	is	that	the	second	line	is	indented	by	one	space.	But
the	 error	message	points	 to	y,	which	 is	misleading.	 In	 general,	 error	messages
indicate	where	the	problem	was	discovered,	but	the	actual	error	might	be	earlier
in	the	code,	sometimes	on	a	previous	line.

In	general,	error	messages	tell	you	where	the	problem	was	discovered,	but	that	is
often	not	where	it	was	caused.

Glossary

body
The	sequence	of	statements	within	a	compound	statement.

boolean	expression
An	expression	whose	value	is	either	True	or	False.

branch
One	of	the	alternative	sequences	of	statements	in	a	conditional	statement.

chained	conditional
A	conditional	statement	with	a	series	of	alternative	branches.

comparison	operator
One	of	the	operators	that	compares	its	operands:	==,	!=,	>,	<,	>=,	and	<=.

conditional	statement
A	 statement	 that	 controls	 the	 flow	 of	 execution	 depending	 on	 some
condition.

condition
The	 boolean	 expression	 in	 a	 conditional	 statement	 that	 determines	which
branch	is	executed.

compound	statement
A	statement	 that	consists	of	a	header	and	a	body.	The	header	ends	with	a
colon	(:).	The	body	is	indented	relative	to	the	header.

guardian	pattern
Where	 we	 construct	 a	 logical	 expression	 with	 additional	 comparisons	 to
take	advantage	of	the	short-circuit	behavior.

logical	operator
One	of	the	operators	that	combines	boolean	expressions:	and,	or,	and	not.

nested	conditional
A	 conditional	 statement	 that	 appears	 in	 one	 of	 the	 branches	 of	 another
conditional	statement.

traceback
A	list	of	the	functions	that	are	executing,	printed	when	an	exception	occurs.

short	circuit
When	Python	is	part-way	through	evaluating	a	logical	expression	and	stops
the	 evaluation	 because	 Python	 knows	 the	 final	 value	 for	 the	 expression
without	needing	to	evaluate	the	rest	of	the	expression.

Exercises

Exercise	1:	Rewrite	your	pay	computation	to	give	the	employee	1.5	times	the
hourly	rate	for	hours	worked	above	40	hours.

Enter	Hours:	45

Enter	Rate:	10

Pay:	475.0

Exercise	 2:	Rewrite	 your	pay	program	using	try	 and	except	 so	 that	 your
program	handles	non-numeric	 input	gracefully	by	printing	a	message	and
exiting	the	program.	The	following	shows	two	executions	of	the	program:

Enter	Hours:	20

Enter	Rate:	nine

Error,	please	enter	numeric	input

Enter	Hours:	forty

Error,	please	enter	numeric	input

Exercise	3:	Write	a	program	to	prompt	for	a	score	between	0.0	and	1.0.	If
the	score	is	out	of	range,	print	an	error	message.	If	the	score	is	between	0.0
and	1.0,	print	a	grade	using	the	following	table:

	Score			Grade

>=	0.9					A

>=	0.8					B

>=	0.7					C

>=	0.6					D

	<	0.6					F

Enter	score:	0.95

A

Enter	score:	perfect

Bad	score

Enter	score:	10.0

Bad	score

Enter	score:	0.75

C

Enter	score:	0.5

F

Run	the	program	repeatedly	as	shown	above	to	test	the	various	different	values
for	input.

1.	 We	will	learn	about	functions	in	Chapter	4	and	loops	in	Chapter	5.↩

Functions
Function	calls

In	the	context	of	programming,	a	function	is	a	named	sequence	of	statements	that
performs	a	computation.	When	you	define	a	function,	you	specify	the	name	and
the	sequence	of	statements.	Later,	you	can	"call"	the	function	by	name.	We	have
already	seen	one	example	of	a	function	call:

>>>	type(32)

<class	'int'>

The	 name	 of	 the	 function	 is	type.	 The	 expression	 in	 parentheses	 is	 called	 the
argument	of	the	function.	The	argument	is	a	value	or	variable	that	we	are	passing
into	the	function	as	input	to	the	function.	The	result,	for	the	type	function,	is	the
type	of	the	argument.

It	 is	common	to	say	that	a	function	"takes"	an	argument	and	"returns"	a	result.
The	result	is	called	the	return	value.

Built-in	functions

Python	 provides	 a	 number	 of	 important	 built-in	 functions	 that	 we	 can	 use
without	needing	to	provide	the	function	definition.	The	creators	of	Python	wrote
a	set	of	functions	to	solve	common	problems	and	included	them	in	Python	for	us
to	use.

The	 max	 and	 min	 functions	 give	 us	 the	 largest	 and	 smallest	 values	 in	 a	 list,
respectively:

>>>	max('Hello	world')

'w'

>>>	min('Hello	world')

'	'

>>>

The	max	function	tells	us	the	"largest	character"	in	the	string	(which	turns	out	to
be	 the	 letter	"w")	and	 the	min	 function	 shows	us	 the	 smallest	 character	 (which
turns	out	to	be	a	space).

Another	very	common	built-in	 function	 is	 the	len	 function	which	 tells	us	how
many	items	are	in	its	argument.	If	the	argument	to	len	is	a	string,	it	returns	the
number	of	characters	in	the	string.

>>>	len('Hello	world')

11

>>>

These	functions	are	not	limited	to	looking	at	strings.	They	can	operate	on	any	set
of	values,	as	we	will	see	in	later	chapters.

You	 should	 treat	 the	names	of	built-in	 functions	 as	 reserved	words	 (i.e.,	 avoid
using	"max"	as	a	variable	name).

Type	conversion	functions

Python	 also	 provides	 built-in	 functions	 that	 convert	 values	 from	 one	 type	 to
another.	The	int	function	takes	any	value	and	converts	it	to	an	integer,	if	it	can,
or	complains	otherwise:

>>>	int('32')

32

>>>	int('Hello')

ValueError:	invalid	literal	for	int()	with	base	10:	'Hello'

int	 can	 convert	 floating-point	 values	 to	 integers,	 but	 it	 doesn't	 round	 off;	 it
chops	off	the	fraction	part:

>>>	int(3.99999)

3

>>>	int(-2.3)

-2

float	converts	integers	and	strings	to	floating-point	numbers:

>>>	float(32)

32.0

>>>	float('3.14159')

3.14159

Finally,	str	converts	its	argument	to	a	string:

>>>	str(32)

'32'

>>>	str(3.14159)

'3.14159'

Math	functions

Python	 has	 a	 math	 module	 that	 provides	 most	 of	 the	 familiar	 mathematical
functions.	Before	we	can	use	the	module,	we	have	to	import	it:

>>>	import	math

This	 statement	 creates	 a	module	 object	 named	 math.	 If	 you	 print	 the	 module
object,	you	get	some	information	about	it:

>>>	print(math)

<module	'math'	(built-in)>

The	module	object	contains	 the	 functions	and	variables	defined	 in	 the	module.
To	access	one	of	the	functions,	you	have	to	specify	the	name	of	the	module	and
the	 name	 of	 the	 function,	 separated	 by	 a	 dot	 (also	 known	 as	 a	 period).	 This
format	is	called	dot	notation.

>>>	ratio	=	signal_power	/	noise_power

>>>	decibels	=	10	*	math.log10(ratio)

>>>	radians	=	0.7

>>>	height	=	math.sin(radians)

The	 first	 example	 computes	 the	 logarithm	base	 10	of	 the	 signal-to-noise	 ratio.
The	math	module	also	provides	a	function	called	log	 that	computes	logarithms
base	e.

The	second	example	finds	the	sine	of	radians.	The	name	of	the	variable	is	a	hint
that	sin	and	the	other	trigonometric	functions	(cos,	tan,	etc.)	take	arguments	in
radians.	To	convert	from	degrees	to	radians,	divide	by	360	and	multiply	by	2π:

>>>	degrees	=	45

>>>	radians	=	degrees	/	360.0	*	2	*	math.pi

>>>	math.sin(radians)

0.7071067811865476

The	expression	math.pi	gets	the	variable	pi	from	the	math	module.	The	value	of
this	variable	is	an	approximation	of	π,	accurate	to	about	15	digits.

If	you	know	your	trigonometry,	you	can	check	the	previous	result	by	comparing
it	to	the	square	root	of	two	divided	by	two:

>>>	math.sqrt(2)	/	2.0

0.7071067811865476

Random	numbers

Given	the	same	inputs,	most	computer	programs	generate	the	same	outputs	every
time,	so	they	are	said	to	be	deterministic.	Determinism	is	usually	a	good	thing,
since	 we	 expect	 the	 same	 calculation	 to	 yield	 the	 same	 result.	 For	 some
applications,	 though,	we	want	 the	computer	 to	be	unpredictable.	Games	are	an
obvious	example,	but	there	are	more.

Making	a	program	truly	nondeterministic	 turns	out	 to	be	not	so	easy,	but	 there
are	 ways	 to	 make	 it	 at	 least	 seem	 nondeterministic.	 One	 of	 them	 is	 to	 use
algorithms	 that	 generate	 pseudorandom	 numbers.	 Pseudorandom	 numbers	 are
not	truly	random	because	they	are	generated	by	a	deterministic	computation,	but
just	by	looking	at	the	numbers	it	 is	all	but	impossible	to	distinguish	them	from

random.

The	 random	 module	 provides	 functions	 that	 generate	 pseudorandom	 numbers
(which	I	will	simply	call	"random"	from	here	on).

The	function	random	returns	a	random	float	between	0.0	and	1.0	(including	0.0
but	not	1.0).	Each	time	you	call	random,	you	get	the	next	number	in	a	long	series.
To	see	a	sample,	run	this	loop:

import	random

for	i	in	range(10):

				x	=	random.random()

				print(x)

This	program	produces	the	following	list	of	10	random	numbers	between	0.0	and
up	to	but	not	including	1.0.

0.11132867921152356

0.5950949227890241

0.04820265884996877

0.841003109276478

0.997914947094958

0.04842330803368111

0.7416295948208405

0.510535245390327

0.27447040171978143

0.028511805472785867

Exercise	1:	Run	the	program	on	your	system	and	see	what	numbers	you	get.
Run	the	program	more	than	once	and	see	what	numbers	you	get.

The	random	function	is	only	one	of	many	functions	that	handle	random	numbers.
The	function	randint	takes	the	parameters	low	and	high,	and	returns	an	integer
between	low	and	high	(including	both).

>>>	random.randint(5,	10)

5

>>>	random.randint(5,	10)

9

To	choose	an	element	from	a	sequence	at	random,	you	can	use	choice:

>>>	t	=	[1,	2,	3]

>>>	random.choice(t)

2

>>>	random.choice(t)

3

The	 random	 module	 also	 provides	 functions	 to	 generate	 random	 values	 from
continuous	 distributions	 including	 Gaussian,	 exponential,	 gamma,	 and	 a	 few
more.

Adding	new	functions

So	far,	we	have	only	been	using	 the	functions	 that	come	with	Python,	but	 it	 is
also	possible	to	add	new	functions.	A	function	definition	specifies	the	name	of	a
new	function	and	 the	sequence	of	statements	 that	execute	when	the	function	 is
called.	 Once	 we	 define	 a	 function,	 we	 can	 reuse	 the	 function	 over	 and	 over
throughout	our	program.

Here	is	an	example:

def	print_lyrics():

				print("I'm	a	lumberjack,	and	I'm	okay.")

				print('I	sleep	all	night	and	I	work	all	day.')

def	is	a	keyword	that	indicates	that	this	is	a	function	definition.	The	name	of	the
function	 is	 print_lyrics.	 The	 rules	 for	 function	 names	 are	 the	 same	 as	 for
variable	names:	letters,	numbers	and	some	punctuation	marks	are	legal,	but	the
first	 character	 can't	 be	 a	 number.	 You	 can't	 use	 a	 keyword	 as	 the	 name	 of	 a
function,	and	you	should	avoid	having	a	variable	and	a	function	with	the	same
name.

The	empty	parentheses	after	the	name	indicate	that	this	function	doesn't	take	any
arguments.	Later	we	will	build	functions	that	take	arguments	as	their	inputs.

The	first	line	of	the	function	definition	is	called	the	header;	the	rest	is	called	the
body.	The	header	has	 to	end	with	a	colon	and	the	body	has	 to	be	 indented.	By

convention,	 the	 indentation	 is	 always	 four	 spaces.	 The	 body	 can	 contain	 any
number	of	statements.

If	 you	 type	 a	 function	 definition	 in	 interactive	 mode,	 the	 interpreter	 prints
ellipses	(...)	to	let	you	know	that	the	definition	isn't	complete:

>>>	def	print_lyrics():

...					print("I'm	a	lumberjack,	and	I'm	okay.")

...					print('I	sleep	all	night	and	I	work	all	day.')

...

To	end	the	function,	you	have	to	enter	an	empty	line	(this	is	not	necessary	in	a
script).

Defining	a	function	creates	a	variable	with	the	same	name.

>>>	print(print_lyrics)

<function	print_lyrics	at	0xb7e99e9c>

>>>	print(type(print_lyrics))

<class	'function'>

The	value	of	print_lyrics	is	a	function	object,	which	has	type	"function".

The	syntax	for	calling	the	new	function	is	the	same	as	for	built-in	functions:

>>>	print_lyrics()

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

Once	you	have	defined	 a	 function,	 you	 can	use	 it	 inside	 another	 function.	For
example,	 to	 repeat	 the	 previous	 refrain,	 we	 could	 write	 a	 function	 called
repeat_lyrics:

def	repeat_lyrics():

				print_lyrics()

				print_lyrics()

And	then	call	repeat_lyrics:

>>>	repeat_lyrics()

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

I'm	a	lumberjack,	and	I'm	okay.

I	sleep	all	night	and	I	work	all	day.

But	that's	not	really	how	the	song	goes.

Definitions	and	uses

Pulling	 together	 the	 code	 fragments	 from	 the	 previous	 section,	 the	 whole
program	looks	like	this:

def	print_lyrics():

				print("I'm	a	lumberjack,	and	I'm	okay.")

				print('I	sleep	all	night	and	I	work	all	day.')

def	repeat_lyrics():

				print_lyrics()

				print_lyrics()

repeat_lyrics()

#	Code:	http://www.py4e.com/code3/lyrics.py

This	 program	 contains	 two	 function	 definitions:	 print_lyrics	 and
repeat_lyrics.	Function	definitions	get	executed	just	like	other	statements,	but
the	effect	is	to	create	function	objects.	The	statements	inside	the	function	do	not
get	executed	until	the	function	is	called,	and	the	function	definition	generates	no
output.

As	you	might	expect,	you	have	to	create	a	function	before	you	can	execute	it.	In
other	words,	the	function	definition	has	to	be	executed	before	the	first	time	it	is
called.

Exercise	2:	Move	the	last	line	of	this	program	to	the	top,	so	the	function	call

appears	 before	 the	 definitions.	 Run	 the	 program	 and	 see	 what	 error
message	you	get.

Exercise	 3:	 Move	 the	 function	 call	 back	 to	 the	 bottom	 and	 move	 the
definition	 of	 print_lyrics	 after	 the	 definition	 of	 repeat_lyrics.	 What
happens	when	you	run	this	program?

Flow	of	execution

In	order	to	ensure	that	a	function	is	defined	before	its	first	use,	you	have	to	know
the	order	in	which	statements	are	executed,	which	is	called	the	flow	of	execution.

Execution	 always	 begins	 at	 the	 first	 statement	 of	 the	 program.	 Statements	 are
executed	one	at	a	time,	in	order	from	top	to	bottom.

Function	 definitions	 do	 not	 alter	 the	 flow	 of	 execution	 of	 the	 program,	 but
remember	that	statements	inside	the	function	are	not	executed	until	the	function
is	called.

A	function	call	is	like	a	detour	in	the	flow	of	execution.	Instead	of	going	to	the
next	 statement,	 the	 flow	 jumps	 to	 the	 body	 of	 the	 function,	 executes	 all	 the
statements	there,	and	then	comes	back	to	pick	up	where	it	left	off.

That	 sounds	 simple	 enough,	 until	 you	 remember	 that	 one	 function	 can	 call
another.	While	in	the	middle	of	one	function,	the	program	might	have	to	execute
the	 statements	 in	 another	 function.	But	while	 executing	 that	 new	 function,	 the
program	might	have	to	execute	yet	another	function!

Fortunately,	 Python	 is	 good	 at	 keeping	 track	 of	 where	 it	 is,	 so	 each	 time	 a
function	completes,	 the	program	picks	up	where	 it	 left	 off	 in	 the	 function	 that
called	it.	When	it	gets	to	the	end	of	the	program,	it	terminates.

What's	the	moral	of	this	sordid	tale?	When	you	read	a	program,	you	don't	always
want	to	read	from	top	to	bottom.	Sometimes	it	makes	more	sense	if	you	follow
the	flow	of	execution.

Parameters	and	arguments

Some	 of	 the	 built-in	 functions	we	 have	 seen	 require	 arguments.	 For	 example,

when	you	call	math.sin	you	pass	a	number	as	an	argument.	Some	functions	take
more	than	one	argument:	math.pow	takes	two,	the	base	and	the	exponent.

Inside	 the	 function,	 the	arguments	are	assigned	 to	variables	called	parameters.
Here	is	an	example	of	a	user-defined	function	that	takes	an	argument:

def	print_twice(bruce):

				print(bruce)

				print(bruce)

This	 function	 assigns	 the	 argument	 to	 a	 parameter	 named	 bruce.	 When	 the
function	is	called,	it	prints	the	value	of	the	parameter	(whatever	it	is)	twice.

This	function	works	with	any	value	that	can	be	printed.

>>>	print_twice('Spam')

Spam

Spam

>>>	print_twice(17)

17

17

>>>	import	math

>>>	print_twice(math.pi)

3.141592653589793

3.141592653589793

The	same	rules	of	composition	that	apply	to	built-in	functions	also	apply	to	user-
defined	 functions,	 so	 we	 can	 use	 any	 kind	 of	 expression	 as	 an	 argument	 for
print_twice:

>>>	print_twice('Spam	'*4)

Spam	Spam	Spam	Spam

Spam	Spam	Spam	Spam

>>>	print_twice(math.cos(math.pi))

-1.0

-1.0

The	argument	is	evaluated	before	the	function	is	called,	so	in	the	examples	the
expressions	'Spam	'*4	and	math.cos(math.pi)	are	only	evaluated	once.

You	can	also	use	a	variable	as	an	argument:

>>>	michael	=	'Eric,	the	half	a	bee.'

>>>	print_twice(michael)

Eric,	the	half	a	bee.

Eric,	the	half	a	bee.

The	name	of	 the	variable	we	pass	as	an	argument	(michael)	has	nothing	 to	do
with	 the	 name	 of	 the	 parameter	 (bruce).	 It	 doesn't	matter	what	 the	 value	was
called	back	home	(in	the	caller);	here	in	print_twice,	we	call	everybody	bruce.

Fruitful	functions	and	void	functions

Some	of	the	functions	we	are	using,	such	as	the	math	functions,	yield	results;	for
lack	 of	 a	 better	 name,	 I	 call	 them	 fruitful	 functions.	 Other	 functions,	 like
print_twice,	 perform	an	 action	but	 don't	 return	 a	 value.	They	 are	 called	void
functions.

When	you	call	a	fruitful	function,	you	almost	always	want	to	do	something	with
the	result;	for	example,	you	might	assign	it	 to	a	variable	or	use	it	as	part	of	an
expression:

x	=	math.cos(radians)

golden	=	(math.sqrt(5)	+	1)	/	2

When	you	call	a	function	in	interactive	mode,	Python	displays	the	result:

>>>	math.sqrt(5)

2.23606797749979

But	 in	a	script,	 if	you	call	a	 fruitful	 function	and	do	not	store	 the	 result	of	 the
function	in	a	variable,	the	return	value	vanishes	into	the	mist!

math.sqrt(5)

This	script	computes	the	square	root	of	5,	but	since	it	doesn't	store	the	result	in	a
variable	or	display	the	result,	it	is	not	very	useful.

Void	functions	might	display	something	on	the	screen	or	have	some	other	effect,
but	 they	don't	have	a	 return	value.	 If	you	 try	 to	assign	 the	 result	 to	a	variable,
you	get	a	special	value	called	None.

>>>	result	=	print_twice('Bing')

Bing

Bing

>>>	print(result)

None

The	value	None	is	not	the	same	as	the	string	"None".	It	is	a	special	value	that	has
its	own	type:

>>>	print(type(None))

<class	'NoneType'>

To	return	a	result	from	a	function,	we	use	the	return	statement	in	our	function.
For	example,	we	could	make	a	very	simple	function	called	addtwo	that	adds	two
numbers	together	and	returns	a	result.

def	addtwo(a,	b):

				added	=	a	+	b

				return	added

x	=	addtwo(3,	5)

print(x)

#	Code:	http://www.py4e.com/code3/addtwo.py

When	 this	 script	 executes,	 the	 print	 statement	 will	 print	 out	 "8"	 because	 the
addtwo	function	was	called	with	3	and	5	as	arguments.	Within	the	function,	the
parameters	a	and	b	were	3	and	5	respectively.	The	function	computed	the	sum	of
the	two	numbers	and	placed	it	in	the	local	function	variable	named	added.	Then
it	used	the	return	statement	to	send	the	computed	value	back	to	the	calling	code
as	the	function	result,	which	was	assigned	to	the	variable	x	and	printed	out.

Why	functions?

It	may	not	be	clear	why	it	is	worth	the	trouble	to	divide	a	program	into	functions.
There	are	several	reasons:

Creating	 a	 new	 function	 gives	 you	 an	 opportunity	 to	 name	 a	 group	 of
statements,	 which	 makes	 your	 program	 easier	 to	 read,	 understand,	 and
debug.

Functions	 can	 make	 a	 program	 smaller	 by	 eliminating	 repetitive	 code.
Later,	if	you	make	a	change,	you	only	have	to	make	it	in	one	place.

Dividing	a	long	program	into	functions	allows	you	to	debug	the	parts	one	at
a	time	and	then	assemble	them	into	a	working	whole.

Well-designed	 functions	 are	 often	 useful	 for	 many	 programs.	 Once	 you
write	and	debug	one,	you	can	reuse	it.

Throughout	 the	 rest	 of	 the	 book,	 often	 we	 will	 use	 a	 function	 definition	 to
explain	a	concept.	Part	of	 the	skill	of	creating	and	using	functions	 is	 to	have	a
function	 properly	 capture	 an	 idea	 such	 as	 "find	 the	 smallest	 value	 in	 a	 list	 of
values".	Later	we	will	show	you	code	that	finds	the	smallest	 in	a	 list	of	values
and	we	will	present	it	to	you	as	a	function	named	min	which	takes	a	list	of	values
as	its	argument	and	returns	the	smallest	value	in	the	list.

Debugging

If	you	are	using	a	text	editor	to	write	your	scripts,	you	might	run	into	problems
with	 spaces	 and	 tabs.	 The	 best	 way	 to	 avoid	 these	 problems	 is	 to	 use	 spaces
exclusively	 (no	 tabs).	 Most	 text	 editors	 that	 know	 about	 Python	 do	 this	 by
default,	but	some	don't.

Tabs	and	spaces	are	usually	invisible,	which	makes	them	hard	to	debug,	so	try	to
find	an	editor	that	manages	indentation	for	you.

Also,	 don't	 forget	 to	 save	 your	 program	before	 you	 run	 it.	 Some	 development
environments	 do	 this	 automatically,	 but	 some	 don't.	 In	 that	 case,	 the	 program
you	 are	 looking	 at	 in	 the	 text	 editor	 is	 not	 the	 same	 as	 the	 program	 you	 are
running.

Debugging	can	take	a	long	time	if	you	keep	running	the	same	incorrect	program
over	and	over!

Make	sure	that	the	code	you	are	looking	at	is	the	code	you	are	running.	If	you're
not	 sure,	 put	 something	 like	print("hello")	 at	 the	 beginning	 of	 the	 program
and	run	it	again.	If	you	don't	see	hello,	you're	not	running	the	right	program!

Glossary

algorithm
A	general	process	for	solving	a	category	of	problems.

argument
A	value	provided	 to	 a	 function	when	 the	 function	 is	 called.	This	 value	 is
assigned	to	the	corresponding	parameter	in	the	function.

body
The	sequence	of	statements	inside	a	function	definition.

composition
Using	an	expression	as	part	of	a	larger	expression,	or	a	statement	as	part	of
a	larger	statement.

deterministic
Pertaining	to	a	program	that	does	the	same	thing	each	time	it	runs,	given	the
same	inputs.

dot	notation
The	 syntax	 for	 calling	 a	 function	 in	 another	 module	 by	 specifying	 the
module	name	followed	by	a	dot	(period)	and	the	function	name.

flow	of	execution
The	order	in	which	statements	are	executed	during	a	program	run.

fruitful	function
A	function	that	returns	a	value.

function
A	 named	 sequence	 of	 statements	 that	 performs	 some	 useful	 operation.
Functions	may	or	may	not	 take	arguments	and	may	or	may	not	produce	a
result.

function	call
A	 statement	 that	 executes	 a	 function.	 It	 consists	 of	 the	 function	 name
followed	by	an	argument	list.

function	definition
A	 statement	 that	 creates	 a	 new	 function,	 specifying	 its	 name,	 parameters,

and	the	statements	it	executes.
function	object

A	 value	 created	 by	 a	 function	 definition.	 The	 name	 of	 the	 function	 is	 a
variable	that	refers	to	a	function	object.

header
The	first	line	of	a	function	definition.

import	statement
A	statement	that	reads	a	module	file	and	creates	a	module	object.

module	object
A	value	created	by	an	import	statement	that	provides	access	to	the	data	and
code	defined	in	a	module.

parameter
A	name	used	inside	a	function	to	refer	to	the	value	passed	as	an	argument.

pseudorandom
Pertaining	 to	 a	 sequence	 of	 numbers	 that	 appear	 to	 be	 random,	 but	 are
generated	by	a	deterministic	program.

return	value
The	 result	 of	 a	 function.	 If	 a	 function	 call	 is	 used	 as	 an	 expression,	 the
return	value	is	the	value	of	the	expression.

void	function
A	function	that	does	not	return	a	value.

Exercises

Exercise	4:	What	is	the	purpose	of	the	"def"	keyword	in	Python?

a)	It	is	slang	that	means	"the	following	code	is	really	cool"
b)	It	indicates	the	start	of	a	function
c)	It	indicates	that	the	following	indented	section	of	code	is	to	be	stored	for	later
d)	b	and	c	are	both	true
e)	None	of	the	above

Exercise	5:	What	will	the	following	Python	program	print	out?

def	fred():

			print("Zap")

def	jane():

			print("ABC")

jane()

fred()

jane()

a)	Zap	ABC	jane	fred	jane
b)	Zap	ABC	Zap
c)	ABC	Zap	jane
d)	ABC	Zap	ABC
e)	Zap	Zap	Zap

Exercise	 6:	 Rewrite	 your	 pay	 computation	 with	 time-and-a-half	 for
overtime	 and	 create	 a	 function	 called	 computepay	 which	 takes	 two
parameters	(hours	and	rate).

Enter	Hours:	45

Enter	Rate:	10

Pay:	475.0

Exercise	7:	Rewrite	 the	grade	program	from	 the	previous	chapter	using	a
function	called	computegrade	that	takes	a	score	as	its	parameter	and	returns
a	grade	as	a	string.

	Score			Grade

>=	0.9					A

>=	0.8					B

>=	0.7					C

>=	0.6					D

	<	0.6					F

Enter	score:	0.95

A

Enter	score:	perfect

Bad	score

Enter	score:	10.0

Bad	score

Enter	score:	0.75

C

Enter	score:	0.5

F

Run	the	program	repeatedly	to	test	the	various	different	values	for	input.

Iteration
Updating	variables

A	 common	 pattern	 in	 assignment	 statements	 is	 an	 assignment	 statement	 that
updates	a	variable,	where	the	new	value	of	the	variable	depends	on	the	old.

x	=	x	+	1

This	means	"get	 the	current	value	of	x,	add	1,	and	 then	update	x	with	 the	new
value."

If	you	try	to	update	a	variable	that	doesn't	exist,	you	get	an	error,	because	Python
evaluates	the	right	side	before	it	assigns	a	value	to	x:

>>>	x	=	x	+	1

NameError:	name	'x'	is	not	defined

Before	you	can	update	a	variable,	you	have	to	initialize	it,	usually	with	a	simple
assignment:

>>>	x	=	0

>>>	x	=	x	+	1

Updating	a	variable	by	adding	1	is	called	an	increment;	subtracting	1	is	called	a
decrement.

The	while	statement

Computers	 are	 often	 used	 to	 automate	 repetitive	 tasks.	 Repeating	 identical	 or
similar	 tasks	 without	 making	 errors	 is	 something	 that	 computers	 do	 well	 and
people	 do	 poorly.	 Because	 iteration	 is	 so	 common,	 Python	 provides	 several
language	features	to	make	it	easier.

One	form	of	iteration	in	Python	is	the	while	statement.	Here	is	a	simple	program
that	counts	down	from	five	and	then	says	"Blastoff!".

n	=	5

while	n	>	0:

				print(n)

				n	=	n	-	1

print('Blastoff!')

You	can	almost	read	the	while	statement	as	if	it	were	English.	It	means,	"While
n	 is	greater	 than	0,	display	 the	value	of	n	and	then	reduce	the	value	of	n	by	1.
When	you	get	to	0,	exit	the	while	statement	and	display	the	word	Blastoff!"

More	formally,	here	is	the	flow	of	execution	for	a	while	statement:

1.	 Evaluate	the	condition,	yielding	True	or	False.

2.	 If	the	condition	is	false,	exit	the	while	statement	and	continue	execution	at
the	next	statement.

3.	 If	the	condition	is	true,	execute	the	body	and	then	go	back	to	step	1.

This	type	of	flow	is	called	a	loop	because	the	third	step	loops	back	around	to	the
top.	We	 call	 each	 time	we	 execute	 the	 body	 of	 the	 loop	 an	 iteration.	 For	 the
above	loop,	we	would	say,	"It	had	five	iterations",	which	means	that	the	body	of
the	loop	was	executed	five	times.

The	body	of	the	loop	should	change	the	value	of	one	or	more	variables	so	that
eventually	 the	 condition	 becomes	 false	 and	 the	 loop	 terminates.	 We	 call	 the
variable	 that	 changes	 each	 time	 the	 loop	 executes	 and	 controls	when	 the	 loop
finishes	 the	 iteration	 variable.	 If	 there	 is	 no	 iteration	 variable,	 the	 loop	 will
repeat	forever,	resulting	in	an	infinite	loop.

Infinite	loops

An	 endless	 source	 of	 amusement	 for	 programmers	 is	 the	 observation	 that	 the
directions	on	shampoo,	"Lather,	rinse,	repeat,"	are	an	infinite	loop	because	there
is	no	iteration	variable	telling	you	how	many	times	to	execute	the	loop.

In	 the	 case	 of	 countdown,	 we	 can	 prove	 that	 the	 loop	 terminates	 because	 we
know	that	the	value	of	n	is	finite,	and	we	can	see	that	the	value	of	n	gets	smaller
each	time	through	the	loop,	so	eventually	we	have	to	get	to	0.	Other	times	a	loop
is	obviously	infinite	because	it	has	no	iteration	variable	at	all.

Sometimes	you	don't	know	it's	time	to	end	a	loop	until	you	get	half	way	through
the	body.	In	that	case	you	can	write	an	infinite	loop	on	purpose	and	then	use	the
break	statement	to	jump	out	of	the	loop.

This	 loop	 is	 obviously	 an	 infinite	 loop	 because	 the	 logical	 expression	 on	 the
while	statement	is	simply	the	logical	constant	True:

n	=	10

while	True:

				print(n,	end='	')

				n	=	n	-	1

print('Done!')

If	you	make	the	mistake	and	run	this	code,	you	will	learn	quickly	how	to	stop	a
runaway	Python	process	on	your	system	or	find	where	the	power-off	button	is	on
your	 computer.	 This	 program	 will	 run	 forever	 or	 until	 your	 battery	 runs	 out
because	the	logical	expression	at	the	top	of	the	loop	is	always	true	by	virtue	of
the	fact	that	the	expression	is	the	constant	value	True.

While	this	is	a	dysfunctional	infinite	loop,	we	can	still	use	this	pattern	to	build
useful	loops	as	long	as	we	carefully	add	code	to	the	body	of	the	loop	to	explicitly
exit	the	loop	using	break	when	we	have	reached	the	exit	condition.

For	example,	suppose	you	want	to	take	input	from	the	user	until	they	type	done.
You	could	write:

while	True:

				line	=	input('>	')

				if	line	==	'done':

								break

				print(line)

print('Done!')

#	Code:	http://www.py4e.com/code3/copytildone1.py

The	 loop	 condition	 is	True,	which	 is	 always	 true,	 so	 the	 loop	 runs	 repeatedly
until	it	hits	the	break	statement.

Each	 time	 through,	 it	prompts	 the	user	with	an	angle	bracket.	 If	 the	user	 types
done,	 the	 break	 statement	 exits	 the	 loop.	 Otherwise	 the	 program	 echoes
whatever	 the	user	 types	and	goes	back	 to	 the	 top	of	 the	 loop.	Here's	 a	 sample
run:

>	hello	there

hello	there

>	finished

finished

>	done

Done!

This	 way	 of	 writing	 while	 loops	 is	 common	 because	 you	 can	 check	 the
condition	anywhere	in	the	loop	(not	just	at	the	top)	and	you	can	express	the	stop
condition	affirmatively	("stop	when	this	happens")	rather	than	negatively	("keep
going	until	that	happens.").

Finishing	iterations	with	continue

Sometimes	 you	 are	 in	 an	 iteration	 of	 a	 loop	 and	 want	 to	 finish	 the	 current
iteration	and	immediately	jump	to	the	next	iteration.	In	that	case	you	can	use	the
continue	statement	to	skip	to	the	next	iteration	without	finishing	the	body	of	the
loop	for	the	current	iteration.

Here	is	an	example	of	a	loop	that	copies	its	input	until	the	user	types	"done",	but
treats	 lines	 that	start	with	 the	hash	character	as	 lines	not	 to	be	printed	(kind	of
like	Python	comments).

while	True:

				line	=	input('>	')

				if	line[0]	==	'#':

								continue

				if	line	==	'done':

								break

				print(line)

print('Done!')

#	Code:	http://www.py4e.com/code3/copytildone2.py

Here	is	a	sample	run	of	this	new	program	with	continue	added.

>	hello	there

hello	there

>	#	don't	print	this

>	print	this!

print	this!

>	done

Done!

All	 the	 lines	 are	 printed	 except	 the	 one	 that	 starts	with	 the	 hash	 sign	 because
when	the	continue	 is	executed,	 it	ends	 the	current	 iteration	and	jumps	back	to
the	while	statement	to	start	the	next	iteration,	thus	skipping	the	print	statement.

Definite	loops	using	for

Sometimes	we	want	to	loop	through	a	set	of	things	such	as	a	list	of	words,	the
lines	 in	 a	 file,	 or	 a	 list	 of	 numbers.	 When	 we	 have	 a	 list	 of	 things	 to	 loop
through,	 we	 can	 construct	 a	 definite	 loop	 using	 a	 for	 statement.	 We	 call	 the
while	statement	an	indefinite	loop	because	it	simply	loops	until	some	condition
becomes	False,	whereas	the	for	loop	is	looping	through	a	known	set	of	items	so
it	runs	through	as	many	iterations	as	there	are	items	in	the	set.

The	 syntax	 of	 a	 for	 loop	 is	 similar	 to	 the	 while	 loop	 in	 that	 there	 is	 a	 for
statement	and	a	loop	body:

friends	=	['Joseph',	'Glenn',	'Sally']

for	friend	in	friends:

				print('Happy	New	Year:',	friend)

print('Done!')

In	Python	terms,	the	variable	friends	is	a	list1	of	three	strings	and	the	for	loop
goes	through	the	list	and	executes	the	body	once	for	each	of	the	three	strings	in
the	list	resulting	in	this	output:

Happy	New	Year:	Joseph

Happy	New	Year:	Glenn

Happy	New	Year:	Sally

Done!

Translating	this	for	loop	to	English	is	not	as	direct	as	the	while,	but	if	you	think
of	friends	as	a	set,	 it	goes	 like	 this:	"Run	 the	statements	 in	 the	body	of	 the	for
loop	once	for	each	friend	in	the	set	named	friends."

Looking	at	the	for	loop,	for	and	in	are	 reserved	Python	keywords,	and	friend
and	friends	are	variables.

for	friend	in	friends:

				print('Happy	New	Year:',	friend)

In	 particular,	 friend	 is	 the	 iteration	 variable	 for	 the	 for	 loop.	 The	 variable
friend	 changes	 for	 each	 iteration	 of	 the	 loop	 and	 controls	when	 the	for	 loop
completes.	 The	 iteration	 variable	 steps	 successively	 through	 the	 three	 strings
stored	in	the	friends	variable.

Loop	patterns

Often	we	use	a	for	or	while	loop	to	go	through	a	list	of	items	or	the	contents	of
a	file	and	we	are	looking	for	something	such	as	the	largest	or	smallest	value	of
the	data	we	scan	through.

These	loops	are	generally	constructed	by:

Initializing	one	or	more	variables	before	the	loop	starts

Performing	 some	 computation	 on	 each	 item	 in	 the	 loop	 body,	 possibly
changing	the	variables	in	the	body	of	the	loop

Looking	at	the	resulting	variables	when	the	loop	completes

We	will	use	a	 list	of	numbers	 to	demonstrate	 the	concepts	 and	construction	of
these	loop	patterns.

Counting	and	summing	loops

For	 example,	 to	 count	 the	 number	 of	 items	 in	 a	 list,	 we	 would	 write	 the

following	for	loop:

count	=	0

for	itervar	in	[3,	41,	12,	9,	74,	15]:

				count	=	count	+	1

print('Count:	',	count)

We	set	the	variable	count	to	zero	before	the	loop	starts,	then	we	write	a	for	loop
to	run	through	the	list	of	numbers.	Our	iteration	variable	is	named	itervar	and
while	we	do	not	use	itervar	in	the	loop,	it	does	control	the	loop	and	cause	the
loop	body	to	be	executed	once	for	each	of	the	values	in	the	list.

In	the	body	of	the	loop,	we	add	1	to	the	current	value	of	count	for	each	of	the
values	in	the	list.	While	the	loop	is	executing,	the	value	of	count	is	the	number
of	values	we	have	seen	"so	far".

Once	 the	 loop	completes,	 the	value	of	count	 is	 the	 total	number	of	 items.	The
total	number	"falls	 in	our	 lap"	at	 the	end	of	 the	loop.	We	construct	 the	loop	so
that	we	have	what	we	want	when	the	loop	finishes.

Another	similar	loop	that	computes	the	total	of	a	set	of	numbers	is	as	follows:

total	=	0

for	itervar	in	[3,	41,	12,	9,	74,	15]:

				total	=	total	+	itervar

print('Total:	',	total)

In	this	loop	we	do	use	the	iteration	variable.	Instead	of	simply	adding	one	to	the
count	as	in	the	previous	loop,	we	add	the	actual	number	(3,	41,	12,	etc.)	to	the
running	total	during	each	loop	iteration.	If	you	think	about	the	variable	total,	it
contains	the	"running	total	of	the	values	so	far".	So	before	the	loop	starts	total
is	 zero	because	we	have	not	yet	 seen	any	values,	during	 the	 loop	total	 is	 the
running	total,	and	at	the	end	of	the	loop	total	is	the	overall	total	of	all	the	values
in	the	list.

As	 the	 loop	 executes,	 total	 accumulates	 the	 sum	 of	 the	 elements;	 a	 variable
used	this	way	is	sometimes	called	an	accumulator.

Neither	 the	 counting	 loop	 nor	 the	 summing	 loop	 are	 particularly	 useful	 in
practice	because	 there	are	built-in	 functions	len()	and	sum()	 that	compute	 the
number	of	items	in	a	list	and	the	total	of	the	items	in	the	list	respectively.

Maximum	and	minimum	loops

To	find	the	largest	value	in	a	list	or	sequence,	we	construct	the	following	loop:

largest	=	None

print('Before:',	largest)

for	itervar	in	[3,	41,	12,	9,	74,	15]:

				if	largest	is	None	or	itervar	>	largest	:

								largest	=	itervar

				print('Loop:',	itervar,	largest)

print('Largest:',	largest)

When	the	program	executes,	the	output	is	as	follows:

Before:	None

Loop:	3	3

Loop:	41	41

Loop:	12	41

Loop:	9	41

Loop:	74	74

Loop:	15	74

Largest:	74

The	variable	largest	 is	 best	 thought	 of	 as	 the	 "largest	 value	we	have	 seen	 so
far".	 Before	 the	 loop,	 we	 set	 largest	 to	 the	 constant	 None.	 None	 is	 a	 special
constant	value	which	we	can	store	in	a	variable	to	mark	the	variable	as	"empty".

Before	 the	 loop	 starts,	 the	 largest	 value	we	 have	 seen	 so	 far	 is	None	 since	we
have	not	 yet	 seen	 any	values.	While	 the	 loop	 is	 executing,	 if	largest	 is	None
then	we	take	the	first	value	we	see	as	the	largest	so	far.	You	can	see	in	the	first
iteration	when	the	value	of	itervar	is	3,	since	largest	is	None,	we	immediately
set	largest	to	be	3.

After	 the	 first	 iteration,	 largest	 is	 no	 longer	 None,	 so	 the	 second	 part	 of	 the
compound	 logical	 expression	 that	 checks	 itervar	 >	 largest	 triggers	 only
when	we	see	a	value	that	is	larger	than	the	"largest	so	far".	When	we	see	a	new
"even	 larger"	 value	 we	 take	 that	 new	 value	 for	 largest.	 You	 can	 see	 in	 the

program	output	that	largest	progresses	from	3	to	41	to	74.

At	 the	 end	 of	 the	 loop,	 we	 have	 scanned	 all	 of	 the	 values	 and	 the	 variable
largest	now	does	contain	the	largest	value	in	the	list.

To	compute	the	smallest	number,	the	code	is	very	similar	with	one	small	change:

smallest	=	None

print('Before:',	smallest)

for	itervar	in	[3,	41,	12,	9,	74,	15]:

				if	smallest	is	None	or	itervar	<	smallest:

								smallest	=	itervar

				print('Loop:',	itervar,	smallest)

print('Smallest:',	smallest)

Again,	 smallest	 is	 the	 "smallest	 so	 far"	 before,	 during,	 and	 after	 the	 loop
executes.	When	the	loop	has	completed,	smallest	contains	the	minimum	value
in	the	list.

Again	as	in	counting	and	summing,	the	built-in	functions	max()	and	min()	make
writing	these	exact	loops	unnecessary.

The	following	is	a	simple	version	of	the	Python	built-in	min()	function:

def	min(values):

				smallest	=	None

				for	value	in	values:

								if	smallest	is	None	or	value	<	smallest:

												smallest	=	value

				return	smallest

In	 the	 function	 version	 of	 the	 smallest	 code,	 we	 removed	 all	 of	 the	 print
statements	so	as	to	be	equivalent	to	the	min	function	which	is	already	built	in	to
Python.

Debugging

As	 you	 start	writing	 bigger	 programs,	 you	might	 find	 yourself	 spending	more
time	 debugging.	More	 code	 means	 more	 chances	 to	 make	 an	 error	 and	 more

places	for	bugs	to	hide.

One	way	to	cut	your	debugging	time	is	"debugging	by	bisection."	For	example,
if	there	are	100	lines	in	your	program	and	you	check	them	one	at	a	time,	it	would
take	100	steps.

Instead,	try	to	break	the	problem	in	half.	Look	at	the	middle	of	the	program,	or
near	 it,	 for	 an	 intermediate	 value	 you	 can	 check.	 Add	 a	 print	 statement	 (or
something	else	that	has	a	verifiable	effect)	and	run	the	program.

If	 the	mid-point	check	 is	 incorrect,	 the	problem	must	be	 in	 the	first	half	of	 the
program.	If	it	is	correct,	the	problem	is	in	the	second	half.

Every	 time	 you	 perform	 a	 check	 like	 this,	 you	 halve	 the	 number	 of	 lines	 you
have	 to	 search.	 After	 six	 steps	 (which	 is	 much	 less	 than	 100),	 you	 would	 be
down	to	one	or	two	lines	of	code,	at	least	in	theory.

In	 practice	 it	 is	 not	 always	 clear	what	 the	 "middle	 of	 the	 program"	 is	 and	 not
always	 possible	 to	 check	 it.	 It	 doesn't	make	 sense	 to	 count	 lines	 and	 find	 the
exact	midpoint.	Instead,	think	about	places	in	the	program	where	there	might	be
errors	and	places	where	it	is	easy	to	put	a	check.	Then	choose	a	spot	where	you
think	the	chances	are	about	the	same	that	the	bug	is	before	or	after	the	check.

Glossary

accumulator
A	variable	used	in	a	loop	to	add	up	or	accumulate	a	result.

counter
A	variable	used	in	a	loop	to	count	the	number	of	times	something	happened.
We	initialize	a	counter	to	zero	and	then	increment	the	counter	each	time	we
want	to	"count"	something.

decrement
An	update	that	decreases	the	value	of	a	variable.

initialize
An	assignment	that	gives	an	initial	value	to	a	variable	that	will	be	updated.

increment
An	update	that	increases	the	value	of	a	variable	(often	by	one).

infinite	loop
A	 loop	 in	which	 the	 terminating	 condition	 is	 never	 satisfied	 or	 for	which

there	is	no	terminating	condition.
iteration

Repeated	execution	of	a	set	of	statements	using	either	a	function	that	calls
itself	or	a	loop.

Exercises

Exercise	1:	Write	a	program	which	repeatedly	reads	numbers	until	the	user
enters	 "done".	 Once	 "done"	 is	 entered,	 print	 out	 the	 total,	 count,	 and
average	of	 the	numbers.	 If	 the	user	 enters	anything	other	 than	a	number,
detect	their	mistake	using	try	and	except	and	print	an	error	message	and
skip	to	the	next	number.

Enter	a	number:	4

Enter	a	number:	5

Enter	a	number:	bad	data

Invalid	input

Enter	a	number:	7

Enter	a	number:	done

16	3	5.333333333333333

Exercise	 2:	Write	 another	 program	 that	 prompts	 for	 a	 list	 of	 numbers	 as
above	 and	 at	 the	 end	 prints	 out	 both	 the	maximum	and	minimum	of	 the
numbers	instead	of	the	average.

1.	 We	will	examine	lists	in	more	detail	in	a	later	chapter.↩

Strings
A	string	is	a	sequence

A	string	is	a	sequence	of	characters.	You	can	access	the	characters	one	at	a	time
with	the	bracket	operator:

>>>	fruit	=	'banana'

>>>	letter	=	fruit[1]

The	second	statement	extracts	 the	character	at	 index	position	1	from	the	fruit
variable	and	assigns	it	to	the	letter	variable.

The	 expression	 in	 brackets	 is	 called	 an	 index.	 The	 index	 indicates	 which
character	in	the	sequence	you	want	(hence	the	name).

But	you	might	not	get	what	you	expect:

>>>	print(letter)

a

For	most	people,	 the	 first	 letter	of	"banana"	 is	"b",	not	"a".	But	 in	Python,	 the
index	is	an	offset	from	the	beginning	of	the	string,	and	the	offset	of	the	first	letter
is	zero.

>>>	letter	=	fruit[0]

>>>	print(letter)

b

So	"b"	 is	 the	0th	 letter	 ("zero-th")	of	 "banana",	 "a"	 is	 the	1th	 letter	 ("one-th"),
and	"n"	is	the	2th	("two-th")	letter.

b
[0]

a
[1]

n
[2]

a
[3]

n
[4]

a
[5]

String	Indexes

You	can	use	any	expression,	including	variables	and	operators,	as	an	index,	but
the	value	of	the	index	has	to	be	an	integer.	Otherwise	you	get:

>>>	letter	=	fruit[1.5]

TypeError:	string	indices	must	be	integers

Getting	the	length	of	a	string	using	len

len	is	a	built-in	function	that	returns	the	number	of	characters	in	a	string:

>>>	fruit	=	'banana'

>>>	len(fruit)

6

To	get	the	last	letter	of	a	string,	you	might	be	tempted	to	try	something	like	this:

>>>	length	=	len(fruit)

>>>	last	=	fruit[length]

IndexError:	string	index	out	of	range

The	 reason	 for	 the	 IndexError	 is	 that	 there	 is	 no	 letter	 in	 "banana"	 with	 the
index	6.	Since	we	started	counting	at	zero,	the	six	letters	are	numbered	0	to	5.	To
get	the	last	character,	you	have	to	subtract	1	from	length:

>>>	last	=	fruit[length-1]

>>>	print(last)

a

Alternatively,	you	can	use	negative	indices,	which	count	backward	from	the	end
of	the	string.	The	expression	fruit[-1]	yields	 the	 last	 letter,	fruit[-2]	yields

the	second	to	last,	and	so	on.

Traversal	through	a	string	with	a	loop

A	lot	of	computations	involve	processing	a	string	one	character	at	a	time.	Often
they	start	at	the	beginning,	select	each	character	in	turn,	do	something	to	it,	and
continue	until	the	end.	This	pattern	of	processing	is	called	a	traversal.	One	way
to	write	a	traversal	is	with	a	while	loop:

index	=	0

while	index	<	len(fruit):

				letter	=	fruit[index]

				print(letter)

				index	=	index	+	1

This	loop	traverses	the	string	and	displays	each	letter	on	a	line	by	itself.	The	loop
condition	is	index	<	len(fruit),	 so	when	index	 is	equal	 to	 the	 length	of	 the
string,	the	condition	is	false,	and	the	body	of	the	loop	is	not	executed.	The	last
character	 accessed	 is	 the	 one	 with	 the	 index	 len(fruit)-1,	 which	 is	 the	 last
character	in	the	string.

Exercise	1:	Write	a	while	loop	that	starts	at	the	last	character	in	the	string
and	works	 its	way	backwards	 to	 the	 first	 character	 in	 the	 string,	printing
each	letter	on	a	separate	line,	except	backwards.

Another	way	to	write	a	traversal	is	with	a	for	loop:

for	char	in	fruit:

				print(char)

Each	 time	 through	 the	 loop,	 the	 next	 character	 in	 the	 string	 is	 assigned	 to	 the
variable	char.	The	loop	continues	until	no	characters	are	left.

String	slices

A	segment	of	a	string	is	called	a	slice.	Selecting	a	slice	is	similar	to	selecting	a
character:

>>>	s	=	'Monty	Python'

>>>	print(s[0:5])

Monty

>>>	print(s[6:12])

Python

The	operator	[n:m]	returns	the	part	of	the	string	from	the	"n-th"	character	to	the
"m-th"	character,	including	the	first	but	excluding	the	last.

If	you	omit	the	first	index	(before	the	colon),	the	slice	starts	at	the	beginning	of
the	string.	If	you	omit	the	second	index,	the	slice	goes	to	the	end	of	the	string:

>>>	fruit	=	'banana'

>>>	fruit[:3]

'ban'

>>>	fruit[3:]

'ana'

If	 the	 first	 index	 is	 greater	 than	 or	 equal	 to	 the	 second	 the	 result	 is	 an	 empty
string,	represented	by	two	quotation	marks:

>>>	fruit	=	'banana'

>>>	fruit[3:3]

''

An	empty	string	contains	no	characters	and	has	length	0,	but	other	than	that,	it	is
the	same	as	any	other	string.

Exercise	2:	Given	that	fruit	is	a	string,	what	does	fruit[:]	mean?

Strings	are	immutable

It	 is	 tempting	 to	 use	 the	 operator	 on	 the	 left	 side	 of	 an	 assignment,	 with	 the
intention	of	changing	a	character	in	a	string.	For	example:

>>>	greeting	=	'Hello,	world!'

>>>	greeting[0]	=	'J'

TypeError:	'str'	object	does	not	support	item	assignment

The	"object"	in	this	case	is	the	string	and	the	"item"	is	the	character	you	tried	to
assign.	For	now,	an	object	 is	 the	same	 thing	as	a	value,	but	we	will	 refine	 that
definition	later.	An	item	is	one	of	the	values	in	a	sequence.

The	 reason	 for	 the	 error	 is	 that	 strings	 are	 immutable,	which	means	 you	 can't
change	an	existing	 string.	The	best	you	can	do	 is	 create	 a	new	string	 that	 is	 a
variation	on	the	original:

>>>	greeting	=	'Hello,	world!'

>>>	new_greeting	=	'J'	+	greeting[1:]

>>>	print(new_greeting)

Jello,	world!

This	example	concatenates	a	new	first	letter	onto	a	slice	of	greeting.	It	has	no
effect	on	the	original	string.

Looping	and	counting

The	 following	 program	 counts	 the	 number	 of	 times	 the	 letter	 "a"	 appears	 in	 a
string:

word	=	'banana'

count	=	0

for	letter	in	word:

				if	letter	==	'a':

								count	=	count	+	1

print(count)

This	program	demonstrates	another	pattern	of	computation	called	a	counter.	The
variable	count	is	initialized	to	0	and	then	incremented	each	time	an	"a"	is	found.
When	the	loop	exits,	count	contains	the	result:	the	total	number	of	a's.

Exercise	3:	Encapsulate	this	code	in	a	function	named	count,	and	generalize
it	so	that	it	accepts	the	string	and	the	letter	as	arguments.

The	in	operator

The	word	in	is	a	boolean	operator	that	takes	two	strings	and	returns	True	if	the
first	appears	as	a	substring	in	the	second:

>>>	'a'	in	'banana'

True

>>>	'seed'	in	'banana'

False

String	comparison

The	comparison	operators	work	on	strings.	To	see	if	two	strings	are	equal:

if	word	==	'banana':

				print('All	right,	bananas.')

Other	comparison	operations	are	useful	for	putting	words	in	alphabetical	order:

if	word	<	'banana':

				print('Your	word,'	+	word	+	',	comes	before	banana.')

elif	word	>	'banana':

				print('Your	word,'	+	word	+	',	comes	after	banana.')

else:

				print('All	right,	bananas.')

Python	 does	 not	 handle	 uppercase	 and	 lowercase	 letters	 the	 same	 way	 that
people	do.	All	the	uppercase	letters	come	before	all	the	lowercase	letters,	so:

Your	word,	Pineapple,	comes	before	banana.

A	 common	 way	 to	 address	 this	 problem	 is	 to	 convert	 strings	 to	 a	 standard
format,	 such	 as	 all	 lowercase,	 before	performing	 the	 comparison.	Keep	 that	 in
mind	in	case	you	have	to	defend	yourself	against	a	man	armed	with	a	Pineapple.

String	methods

Strings	 are	 an	 example	 of	 Python	 objects.	 An	 object	 contains	 both	 data	 (the
actual	 string	 itself)	 and	methods,	which	 are	 effectively	 functions	 that	 are	 built
into	the	object	and	are	available	to	any	instance	of	the	object.

Python	has	a	function	called	dir	which	lists	the	methods	available	for	an	object.
The	type	 function	shows	 the	 type	of	an	object	and	 the	dir	 function	shows	 the
available	methods.

>>>	stuff	=	'Hello	world'

>>>	type(stuff)

<class	'str'>

>>>	dir(stuff)

['capitalize',	'casefold',	'center',	'count',	'encode',

'endswith',	'expandtabs',	'find',	'format',	'format_map',

'index',	'isalnum',	'isalpha',	'isdecimal',	'isdigit',

'isidentifier',	'islower',	'isnumeric',	'isprintable',

'isspace',	'istitle',	'isupper',	'join',	'ljust',	'lower',

'lstrip',	'maketrans',	'partition',	'replace',	'rfind',

'rindex',	'rjust',	'rpartition',	'rsplit',	'rstrip',

'split',	'splitlines',	'startswith',	'strip',	'swapcase',

'title',	'translate',	'upper',	'zfill']

>>>	help(str.capitalize)

Help	on	method_descriptor:

capitalize(...)

				S.capitalize()	->	str

				Return	a	capitalized	version	of	S,	i.e.	make	the	first	character

				have	upper	case	and	the	rest	lower	case.

>>>

While	 the	 dir	 function	 lists	 the	 methods,	 and	 you	 can	 use	 help	 to	 get	 some
simple	documentation	on	a	method,	a	better	source	of	documentation	for	string
methods	would	be	https://docs.python.org/library/stdtypes.html#string-methods.

Calling	a	method	is	similar	to	calling	a	function	(it	takes	arguments	and	returns	a
value)	 but	 the	 syntax	 is	 different.	We	 call	 a	method	 by	 appending	 the	method
name	to	the	variable	name	using	the	period	as	a	delimiter.

For	example,	the	method	upper	 takes	a	string	and	returns	a	new	string	with	all
uppercase	letters:

https://docs.python.org/library/stdtypes.html#string-methods

Instead	 of	 the	 function	 syntax	 upper(word),	 it	 uses	 the	 method	 syntax
word.upper().

>>>	word	=	'banana'

>>>	new_word	=	word.upper()

>>>	print(new_word)

BANANA

This	form	of	dot	notation	specifies	the	name	of	the	method,	upper,	and	the	name
of	the	string	to	apply	the	method	to,	word.	The	empty	parentheses	indicate	 that
this	method	takes	no	argument.

A	method	 call	 is	 called	 an	 invocation;	 in	 this	 case,	we	would	 say	 that	we	 are
invoking	upper	on	the	word.

For	example,	there	is	a	string	method	named	find	that	searches	for	the	position
of	one	string	within	another:

>>>	word	=	'banana'

>>>	index	=	word.find('a')

>>>	print(index)

1

In	this	example,	we	invoke	find	on	word	and	pass	the	letter	we	are	looking	for
as	a	parameter.

The	find	method	can	find	substrings	as	well	as	characters:

>>>	word.find('na')

2

It	can	take	as	a	second	argument	the	index	where	it	should	start:

>>>	word.find('na',	3)

4

One	common	task	is	to	remove	white	space	(spaces,	tabs,	or	newlines)	from	the

beginning	and	end	of	a	string	using	the	strip	method:

>>>	line	=	'		Here	we	go		'

>>>	line.strip()

'Here	we	go'

Some	methods	such	as	startswith	return	boolean	values.

>>>	line	=	'Have	a	nice	day'

>>>	line.startswith('Have')

True

>>>	line.startswith('h')

False

You	will	note	that	startswith	 requires	case	 to	match,	so	sometimes	we	take	a
line	 and	 map	 it	 all	 to	 lowercase	 before	 we	 do	 any	 checking	 using	 the	 lower
method.

>>>	line	=	'Have	a	nice	day'

>>>	line.startswith('h')

False

>>>	line.lower()

'have	a	nice	day'

>>>	line.lower().startswith('h')

True

In	the	last	example,	the	method	lower	is	called	and	then	we	use	startswith	 to
see	if	the	resulting	lowercase	string	starts	with	the	letter	"h".	As	long	as	we	are
careful	with	the	order,	we	can	make	multiple	method	calls	in	a	single	expression.

Exercise	 4:	 There	 is	 a	 string	 method	 called	 count	 that	 is	 similar	 to	 the
function	in	the	previous	exercise.	Read	the	documentation	of	this	method	at:

https://docs.python.org/library/stdtypes.html#string-methods

Write	an	invocation	that	counts	the	number	of	times	the	 letter	a	occurs	 in
"banana".

https://docs.python.org/library/stdtypes.html#string-methods

Parsing	strings

Often,	we	want	to	look	into	a	string	and	find	a	substring.	For	example	if	we	were
presented	a	series	of	lines	formatted	as	follows:

From	stephen.marquard@uct.ac.zaSat	Jan	5	09:14:16	2008

and	we	wanted	to	pull	out	only	the	second	half	of	the	address	(i.e.,	uct.ac.za)
from	each	line,	we	can	do	this	by	using	the	find	method	and	string	slicing.

First,	we	will	find	the	position	of	the	at-sign	in	the	string.	Then	we	will	find	the
position	of	the	first	space	after	the	at-sign.	And	then	we	will	use	string	slicing	to
extract	the	portion	of	the	string	which	we	are	looking	for.

>>>	data	=	'From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008'

>>>	atpos	=	data.find('@')

>>>	print(atpos)

21

>>>	sppos	=	data.find('	',atpos)

>>>	print(sppos)

31

>>>	host	=	data[atpos+1:sppos]

>>>	print(host)

uct.ac.za

>>>

We	use	a	version	of	the	find	method	which	allows	us	to	specify	a	position	in	the
string	 where	 we	 want	 find	 to	 start	 looking.	 When	 we	 slice,	 we	 extract	 the
characters	 from	 "one	 beyond	 the	 at-sign	 through	 up	 to	 but	 not	 including	 the
space	character".

The	documentation	for	the	find	method	is	available	at

https://docs.python.org/library/stdtypes.html#string-methods.

Formatted	String	Literals

A	formatted	string	literal	(often	referred	to	simply	as	an	f-string)	allows	Python
expressions	to	be	used	within	string	literals.	This	is	accomplished	by	prepending

https://docs.python.org/library/stdtypes.html#string-methods

an	f	to	the	string	literal	and	enclosing	expressions	in	curly	braces	{}.

For	 example,	wrapping	 a	 variable	 name	 in	 curly	 braces	 inside	 an	 f-string	will
cause	it	to	be	replaced	by	its	value:

>>>	camels	=	42

>>>	f'{camels}'

'42'

The	result	is	the	string	'42',	which	is	not	to	be	confused	with	the	integer	value	42.

An	expression	can	appear	anywhere	in	the	string,	so	you	can	embed	a	value	in	a
sentence:

>>>	camels	=	42

>>>	f'I	have	spotted	{camels}	camels.'

'I	have	spotted	42	camels.'

Several	 expressions	 can	 be	 included	 within	 a	 single	 string	 literal	 in	 order	 to
create	more	complex	strings.

>>>	years	=	3

>>>	count	=	.1

>>>	species	=	'camels'

>>>	f'In	{years}	years	I	have	spotted	{count}	{species}.'

'In	3	years	I	have	spotted	0.1	camels.'

Formatted	string	literals	are	powerful,	and	they	can	do	even	more	than	is	covered
here.	You	can	read	more	about	them	at

https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals.

Debugging

A	 skill	 that	 you	 should	 cultivate	 as	 you	 program	 is	 always	 asking	 yourself,
"What	could	go	wrong	here?"	or	alternatively,	"What	crazy	thing	might	our	user
do	to	crash	our	(seemingly)	perfect	program?"

https://docs.python.org/3/tutorial/inputoutput.html#formatted-string-literals

For	example,	look	at	the	program	which	we	used	to	demonstrate	the	while	loop
in	the	chapter	on	iteration:

while	True:

				line	=	input('>	')

				if	line[0]	==	'#':

								continue

				if	line	==	'done':

								break

				print(line)

print('Done!')

#	Code:	http://www.py4e.com/code3/copytildone2.py

Look	what	happens	when	the	user	enters	an	empty	line	of	input:

>	hello	there

hello	there

>	#	don't	print	this

>	print	this!

print	this!

>

Traceback	(most	recent	call	last):

		File	"copytildone.py",	line	3,	in	<module>

				if	line[0]	==	'#':

IndexError:	string	index	out	of	range

The	code	works	fine	until	it	is	presented	an	empty	line.	Then	there	is	no	zero-th
character,	 so	we	 get	 a	 traceback.	 There	 are	 two	 solutions	 to	 this	 to	make	 line
three	"safe"	even	if	the	line	is	empty.

One	possibility	is	to	simply	use	the	startswith	method	which	returns	False	 if
the	string	is	empty.

if	line.startswith('#'):

Another	way	is	to	safely	write	the	if	statement	using	the	guardian	pattern	and
make	sure	the	second	logical	expression	is	evaluated	only	where	there	is	at	least
one	character	in	the	string:

if	len(line)	>	0	and	line[0]	==	'#':

Glossary

counter
A	 variable	 used	 to	 count	 something,	 usually	 initialized	 to	 zero	 and	 then
incremented.

empty	string
A	 string	 with	 no	 characters	 and	 length	 0,	 represented	 by	 two	 quotation
marks.

format	operator
An	operator,	%,	that	takes	a	format	string	and	a	tuple	and	generates	a	string
that	includes	the	elements	of	the	tuple	formatted	as	specified	by	the	format
string.

format	sequence
A	 sequence	 of	 characters	 in	 a	 format	 string,	 like	%d,	 that	 specifies	 how	 a
value	should	be	formatted.

format	string
A	string,	used	with	the	format	operator,	that	contains	format	sequences.

flag
A	boolean	variable	used	to	indicate	whether	a	condition	is	true	or	false.

invocation
A	statement	that	calls	a	method.

immutable
The	property	of	a	sequence	whose	items	cannot	be	assigned.

index
An	integer	value	used	to	select	an	item	in	a	sequence,	such	as	a	character	in
a	string.

item
One	of	the	values	in	a	sequence.

method
A	function	that	is	associated	with	an	object	and	called	using	dot	notation.

object
Something	 a	 variable	 can	 refer	 to.	 For	 now,	 you	 can	 use	 "object"	 and
"value"	interchangeably.

search
A	pattern	of	traversal	that	stops	when	it	finds	what	it	is	looking	for.

sequence
An	ordered	set;	that	is,	a	set	of	values	where	each	value	is	identified	by	an
integer	index.

slice
A	part	of	a	string	specified	by	a	range	of	indices.

traverse
To	iterate	 through	the	 items	in	a	sequence,	performing	a	similar	operation
on	each.

Exercises

Exercise	5:	Take	the	following	Python	code	that	stores	a	string:

str	=	'X-DSPAM-Confidence:0.8475'

Use	find	and	string	slicing	to	extract	the	portion	of	the	string	after	the	colon
character	 and	 then	use	 the	float	 function	 to	 convert	 the	 extracted	 string
into	a	floating	point	number.

Exercise	 6:	 Read	 the	 documentation	 of	 the	 string	 methods	 at
https://docs.python.org/library/stdtypes.html#string-methods.	 You	 might
want	 to	 experiment	with	 some	of	 them	 to	make	 sure	you	understand	how
they	work.	strip	and	replace	are	particularly	useful.

The	documentation	uses	a	syntax	that	might	be	confusing.	For	example,	in
find(sub[,	start[,	end]]),	 the	brackets	 indicate	optional	 arguments.	So
sub	is	required,	but	start	 is	optional,	and	if	you	include	start,	then	end	 is
optional.

https://docs.python.org/library/stdtypes.html#string-methods

Files
Persistence

So	far,	we	have	learned	how	to	write	programs	and	communicate	our	intentions
to	 the	 Central	 Processing	 Unit	 using	 conditional	 execution,	 functions,	 and
iterations.	We	 have	 learned	 how	 to	 create	 and	 use	 data	 structures	 in	 the	Main
Memory.	 The	CPU	 and	memory	 are	where	 our	 software	works	 and	 runs.	 It	 is
where	all	of	the	"thinking"	happens.

But	if	you	recall	from	our	hardware	architecture	discussions,	once	the	power	is
turned	off,	anything	stored	in	either	the	CPU	or	main	memory	is	erased.	So	up	to
now,	our	programs	have	just	been	transient	fun	exercises	to	learn	Python.

Input	and
Output
Devices

Software

Main	
Memory

Central
Processing

Unit

What
Next?

Network

Secondary
Memory

Secondary	Memory

In	 this	chapter,	we	start	 to	work	with	Secondary	Memory	 (or	 files).	Secondary
memory	 is	 not	 erased	when	 the	 power	 is	 turned	 off.	Or	 in	 the	 case	 of	 a	USB
flash	 drive,	 the	 data	 we	 write	 from	 our	 programs	 can	 be	 removed	 from	 the
system	and	transported	to	another	system.

We	will	primarily	focus	on	reading	and	writing	text	files	such	as	those	we	create
in	 a	 text	 editor.	 Later	we	will	 see	 how	 to	work	with	 database	 files	which	 are
binary	 files,	 specifically	 designed	 to	 be	 read	 and	 written	 through	 database
software.

Opening	files

When	we	want	to	read	or	write	a	file	(say	on	your	hard	drive),	we	first	must	open
the	 file.	 Opening	 the	 file	 communicates	 with	 your	 operating	 system,	 which
knows	 where	 the	 data	 for	 each	 file	 is	 stored.	When	 you	 open	 a	 file,	 you	 are
asking	 the	 operating	 system	 to	 find	 the	 file	 by	 name	 and	 make	 sure	 the	 file
exists.	In	this	example,	we	open	the	file	mbox.txt,	which	should	be	stored	in	the
same	folder	 that	you	are	 in	when	you	start	Python.	You	can	download	 this	 file
from	www.py4e.com/code3/mbox.txt

>>>	fhand	=	open('mbox.txt')

>>>	print(fhand)

<_io.TextIOWrapper	name='mbox.txt'	mode='r'	encoding='cp1252'>

If	the	open	 is	successful,	the	operating	system	returns	us	a	 file	handle.	The	file
handle	is	not	the	actual	data	contained	in	the	file,	but	instead	it	is	a	"handle"	that
we	can	use	 to	read	the	data.	You	are	given	a	handle	 if	 the	requested	file	exists
and	you	have	the	proper	permissions	to	read	the	file.

From	stephen.m..
Re tu rn -Pa th : 	<p . .
Da t e : 	 Sa t , 	 5 	 J a n 	 . .
To : 	source@col l . .
F rom: 	s tephen . . .
S u b j e c t : 	 [s a k a i] . . .
D e t a i l s : 	 h t t p : / . . .
…Your

Program

H
A
N
D
L
E

open
close
read
write

A	File	Handle

If	the	file	does	not	exist,	open	will	fail	with	a	traceback	and	you	will	not	get	a
handle	to	access	the	contents	of	the	file:

>>>	fhand	=	open('stuff.txt')

Traceback	(most	recent	call	last):

File	"<stdin>",	line	1,	in	<module>

FileNotFoundError:	[Errno	2]	No	such	file	or	directory:	'stuff.txt'

http://www.py4e.com/code3/mbox.txt

Later	 we	 will	 use	 try	 and	 except	 to	 deal	 more	 gracefully	 with	 the	 situation
where	we	attempt	to	open	a	file	that	does	not	exist.

Text	files	and	lines

A	text	 file	can	be	 thought	of	as	a	sequence	of	 lines,	much	 like	a	Python	string
can	be	thought	of	as	a	sequence	of	characters.	For	example,	this	is	a	sample	of	a
text	file	which	records	mail	activity	from	various	individuals	in	an	open	source
project	development	team:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

Return-Path:	<postmaster@collab.sakaiproject.org>

Date:	Sat,	5	Jan	2008	09:12:18	-0500

To:	source@collab.sakaiproject.org

From:	stephen.marquard@uct.ac.za

Subject:	[sakai]	svn	commit:	r39772	-	content/branches/

Details:	http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

...

The	entire	file	of	mail	interactions	is	available	from

www.py4e.com/code3/mbox.txt

and	a	shortened	version	of	the	file	is	available	from

www.py4e.com/code3/mbox-short.txt

These	files	are	in	a	standard	format	for	a	file	containing	multiple	mail	messages.
The	 lines	which	 start	with	 "From	"	 separate	 the	messages	 and	 the	 lines	which
start	 with	 "From:"	 are	 part	 of	 the	 messages.	 For	 more	 information	 about	 the
mbox	format,	see	https://en.wikipedia.org/wiki/Mbox.

To	break	the	file	into	lines,	there	is	a	special	character	that	represents	the	"end	of
the	line"	called	the	newline	character.

In	 Python,	 we	 represent	 the	 newline	 character	 as	 a	 backslash-n	 in	 string
constants.	 Even	 though	 this	 looks	 like	 two	 characters,	 it	 is	 actually	 a	 single
character.	When	we	look	at	the	variable	by	entering	"stuff"	in	the	interpreter,	it
shows	us	the	\n	in	the	string,	but	when	we	use	print	to	show	the	string,	we	see
the	string	broken	into	two	lines	by	the	newline	character.

http://www.py4e.com/code3/mbox.txt
http://www.py4e.com/code3/mbox-short.txt
https://en.wikipedia.org/wiki/Mbox

>>>	stuff	=	'Hello\nWorld!'

>>>	stuff

'Hello\nWorld!'

>>>	print(stuff)

Hello

World!

>>>	stuff	=	'X\nY'

>>>	print(stuff)

X

Y

>>>	len(stuff)

3

You	can	also	see	that	the	length	of	the	string	X\nY	is	three	characters	because	the
newline	character	is	a	single	character.

So	when	we	look	at	the	lines	in	a	file,	we	need	to	imagine	that	there	is	a	special
invisible	character	called	the	newline	at	the	end	of	each	line	that	marks	the	end
of	the	line.

So	the	newline	character	separates	the	characters	in	the	file	into	lines.

Reading	files

While	 the	 file	handle	 does	 not	 contain	 the	 data	 for	 the	 file,	 it	 is	 quite	 easy	 to
construct	a	for	loop	to	read	through	and	count	each	of	the	lines	in	a	file:

fhand	=	open('mbox-short.txt')

count	=	0

for	line	in	fhand:

				count	=	count	+	1

print('Line	Count:',	count)

#	Code:	http://www.py4e.com/code3/open.py

We	can	use	the	file	handle	as	the	sequence	in	our	for	loop.	Our	for	loop	simply
counts	the	number	of	lines	in	the	file	and	prints	them	out.	The	rough	translation
of	the	for	 loop	into	English	is,	"for	each	line	in	the	file	represented	by	the	file
handle,	add	one	to	the	count	variable."

The	 reason	 that	 the	open	 function	 does	 not	 read	 the	 entire	 file	 is	 that	 the	 file
might	be	quite	large	with	many	gigabytes	of	data.	The	open	statement	takes	the
same	 amount	 of	 time	 regardless	 of	 the	 size	 of	 the	 file.	 The	 for	 loop	 actually
causes	the	data	to	be	read	from	the	file.

When	 the	 file	 is	 read	 using	 a	 for	 loop	 in	 this	 manner,	 Python	 takes	 care	 of
splitting	 the	 data	 in	 the	 file	 into	 separate	 lines	 using	 the	 newline	 character.
Python	reads	each	line	through	the	newline	and	includes	the	newline	as	the	last
character	in	the	line	variable	for	each	iteration	of	the	for	loop.

Because	the	for	loop	reads	the	data	one	line	at	a	time,	it	can	efficiently	read	and
count	the	lines	in	very	large	files	without	running	out	of	main	memory	to	store
the	data.	The	above	program	can	count	the	lines	in	any	size	file	using	very	little
memory	since	each	line	is	read,	counted,	and	then	discarded.

If	 you	 know	 the	 file	 is	 relatively	 small	 compared	 to	 the	 size	 of	 your	 main
memory,	you	can	read	the	whole	file	 into	one	string	using	the	read	method	on
the	file	handle.

>>>	fhand	=	open('mbox-short.txt')

>>>	inp	=	fhand.read()

>>>	print(len(inp))

94626

>>>	print(inp[:20])

From	stephen.marquar

In	 this	 example,	 the	 entire	 contents	 (all	 94,626	 characters)	 of	 the	 file	mbox-
short.txt	are	read	directly	into	the	variable	inp.	We	use	string	slicing	to	print	out
the	first	20	characters	of	the	string	data	stored	in	inp.

When	the	file	is	read	in	this	manner,	all	the	characters	including	all	of	the	lines
and	newline	characters	are	one	big	string	in	the	variable	inp.	It	is	a	good	idea	to
store	 the	 output	 of	 read	 as	 a	 variable	 because	 each	 call	 to	 read	 exhausts	 the
resource:

>>>	fhand	=	open('mbox-short.txt')

>>>	print(len(fhand.read()))

94626

>>>	print(len(fhand.read()))

0

Remember	that	this	form	of	the	open	function	should	only	be	used	if	the	file	data
will	fit	comfortably	in	the	main	memory	of	your	computer.	If	the	file	is	too	large
to	fit	in	main	memory,	you	should	write	your	program	to	read	the	file	in	chunks
using	a	for	or	while	loop.

Searching	through	a	file

When	you	are	 searching	 through	data	 in	a	 file,	 it	 is	 a	very	common	pattern	 to
read	 through	a	file,	 ignoring	most	of	 the	 lines	and	only	processing	 lines	which
meet	a	particular	condition.	We	can	combine	the	pattern	for	reading	a	file	with
string	methods	to	build	simple	search	mechanisms.

For	example,	 if	we	wanted	to	read	a	file	and	only	print	out	 lines	which	started
with	the	prefix	"From:",	we	could	use	the	string	method	startswith	to	select	only
those	lines	with	the	desired	prefix:

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				if	line.startswith('From:'):

								print(line)

#	Code:	http://www.py4e.com/code3/search1.py

When	this	program	runs,	we	get	the	following	output:

From:	stephen.marquard@uct.ac.za

From:	louis@media.berkeley.edu

From:	zqian@umich.edu

From:	rjlowe@iupui.edu

...

The	output	 looks	great	since	 the	only	 lines	we	are	seeing	are	 those	which	start
with	"From:",	but	why	are	we	seeing	 the	extra	blank	 lines?	This	 is	due	 to	 that
invisible	newline	character.	Each	of	the	lines	ends	with	a	newline,	so	the	print

statement	prints	the	string	in	the	variable	line	which	includes	a	newline	and	then
print	adds	another	newline,	resulting	in	the	double	spacing	effect	we	see.

We	 could	 use	 line	 slicing	 to	 print	 all	 but	 the	 last	 character,	 but	 a	 simpler
approach	is	to	use	the	rstrip	method	which	strips	whitespaces	from	the	right	side
of	a	string	as	follows:

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				line	=	line.rstrip()

				if	line.startswith('From:'):

								print(line)

#	Code:	http://www.py4e.com/code3/search2.py

When	this	program	runs,	we	get	the	following	output:

From:	stephen.marquard@uct.ac.za

From:	louis@media.berkeley.edu

From:	zqian@umich.edu

From:	rjlowe@iupui.edu

From:	zqian@umich.edu

From:	rjlowe@iupui.edu

From:	cwen@iupui.edu

...

As	 your	 file	 processing	 programs	 get	 more	 complicated,	 you	 may	 want	 to
structure	your	search	loops	using	continue.	The	basic	idea	of	the	search	loop	is
that	 you	 are	 looking	 for	 "interesting"	 lines	 and	 effectively	 skipping
"uninteresting"	 lines.	 And	 then	 when	 we	 find	 an	 interesting	 line,	 we	 do
something	with	that	line.

We	can	structure	the	loop	to	follow	the	pattern	of	skipping	uninteresting	lines	as
follows:

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				line	=	line.rstrip()

				#	Skip	'uninteresting	lines'

				if	not	line.startswith('From:'):

								continue

				#	Process	our	'interesting'	line

				print(line)

#	Code:	http://www.py4e.com/code3/search3.py

The	 output	 of	 the	 program	 is	 the	 same.	 In	English,	 the	 uninteresting	 lines	 are
those	which	do	not	start	with	"From:",	which	we	skip	using	continue.	For	 the
"interesting"	lines	(i.e.,	those	that	start	with	"From:")	we	perform	the	processing.

We	 can	 use	 the	find	 string	method	 to	 simulate	 a	 text	 editor	 search	 that	 finds
lines	where	 the	 search	 string	 is	 anywhere	 in	 the	 line.	 Since	find	 looks	 for	 an
occurrence	of	a	string	within	another	string	and	either	returns	the	position	of	the
string	or	-1	if	the	string	was	not	found,	we	can	write	the	following	loop	to	show
lines	which	contain	the	string	"@uct.ac.za"	(i.e.,	they	come	from	the	University
of	Cape	Town	in	South	Africa):

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				line	=	line.rstrip()

				if	line.find('@uct.ac.za')	==	-1:	continue

				print(line)

#	Code:	http://www.py4e.com/code3/search4.py

Which	produces	the	following	output:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

X-Authentication-Warning:	set	sender	to	stephen.marquard@uct.ac.za	using	-f

From:	stephen.marquard@uct.ac.za

Author:	stephen.marquard@uct.ac.za

From	david.horwitz@uct.ac.za	Fri	Jan		4	07:02:32	2008

X-Authentication-Warning:	set	sender	to	david.horwitz@uct.ac.za	using	-f

From:	david.horwitz@uct.ac.za

Author:	david.horwitz@uct.ac.za

...

Here	 we	 also	 use	 the	 contracted	 form	 of	 the	 if	 statement	 where	 we	 put	 the
continue	on	the	same	line	as	the	if.	This	contracted	form	of	the	if	functions	the
same	as	if	the	continue	were	on	the	next	line	and	indented.

Letting	the	user	choose	the	file	name

We	really	do	not	want	 to	have	 to	edit	our	Python	code	every	 time	we	want	 to
process	a	different	file.	It	would	be	more	usable	to	ask	the	user	to	enter	the	file
name	string	each	time	the	program	runs	so	they	can	use	our	program	on	different
files	without	changing	the	Python	code.

This	is	quite	simple	to	do	by	reading	the	file	name	from	the	user	using	input	as
follows:

fname	=	input('Enter	the	file	name:	')

fhand	=	open(fname)

count	=	0

for	line	in	fhand:

				if	line.startswith('Subject:'):

								count	=	count	+	1

print('There	were',	count,	'subject	lines	in',	fname)

#	Code:	http://www.py4e.com/code3/search6.py

We	read	the	file	name	from	the	user	and	place	it	in	a	variable	named	fname	and
open	that	file.	Now	we	can	run	the	program	repeatedly	on	different	files.

python	search6.py

Enter	the	file	name:	mbox.txt

There	were	1797	subject	lines	in	mbox.txt

python	search6.py

Enter	the	file	name:	mbox-short.txt

There	were	27	subject	lines	in	mbox-short.txt

Before	 peeking	 at	 the	 next	 section,	 take	 a	 look	 at	 the	 above	 program	 and	 ask
yourself,	 "What	 could	 go	 possibly	wrong	 here?"	 or	 "What	might	 our	 friendly
user	 do	 that	 would	 cause	 our	 nice	 little	 program	 to	 ungracefully	 exit	 with	 a
traceback,	making	us	look	not-so-cool	in	the	eyes	of	our	users?"

Using	try,	except,	and	open

I	told	you	not	to	peek.	This	is	your	last	chance.

What	if	our	user	types	something	that	is	not	a	file	name?

python	search6.py

Enter	the	file	name:	missing.txt

Traceback	(most	recent	call	last):

		File	"search6.py",	line	2,	in	<module>

				fhand	=	open(fname)

FileNotFoundError:	[Errno	2]	No	such	file	or	directory:	'missing.txt'

python	search6.py

Enter	the	file	name:	na	na	boo	boo

Traceback	(most	recent	call	last):

		File	"search6.py",	line	2,	in	<module>

				fhand	=	open(fname)

FileNotFoundError:	[Errno	2]	No	such	file	or	directory:	'na	na	boo	boo'

Do	not	laugh.	Users	will	eventually	do	every	possible	thing	they	can	do	to	break
your	programs,	either	mistakenly	or	with	malicious	intent.	As	a	matter	of	fact,	an
important	 part	 of	 any	 software	 development	 team	 is	 a	 person	 or	 group	 called
Quality	Assurance	(or	QA	for	short)	whose	very	job	it	is	to	do	the	craziest	things
possible	in	an	attempt	to	break	the	software	that	the	programmer	has	created.

The	QA	 team	 is	 responsible	 for	 finding	 the	 flaws	 in	programs	before	we	have
delivered	the	program	to	the	end	users	who	may	be	purchasing	the	software	or
paying	our	salary	to	write	the	software.	So	the	QA	team	is	the	programmer's	best
friend.

So	now	 that	we	 see	 the	 flaw	 in	 the	program,	we	can	elegantly	 fix	 it	 using	 the
try/except	 structure.	We	need	 to	assume	that	 the	open	 call	might	 fail	 and	add
recovery	code	when	the	open	fails	as	follows:

fname	=	input('Enter	the	file	name:	')

try:

				fhand	=	open(fname)

except:

				print('File	cannot	be	opened:',	fname)

				exit()

count	=	0

for	line	in	fhand:

				if	line.startswith('Subject:'):

								count	=	count	+	1

print('There	were',	count,	'subject	lines	in',	fname)

#	Code:	http://www.py4e.com/code3/search7.py

The	exit	function	terminates	the	program.	It	is	a	function	that	we	call	that	never
returns.	Now	when	our	user	(or	QA	team)	types	in	silliness	or	bad	file	names,	we
"catch"	them	and	recover	gracefully:

python	search7.py

Enter	the	file	name:	mbox.txt

There	were	1797	subject	lines	in	mbox.txt

python	search7.py

Enter	the	file	name:	na	na	boo	boo

File	cannot	be	opened:	na	na	boo	boo

Protecting	the	open	call	is	a	good	example	of	the	proper	use	of	try	and	except
in	a	Python	program.	We	use	the	term	"Pythonic"	when	we	are	doing	something
the	"Python	way".	We	might	say	that	the	above	example	is	the	Pythonic	way	to
open	a	file.

Once	you	become	more	skilled	in	Python,	you	can	engage	in	repartee	with	other
Python	programmers	to	decide	which	of	two	equivalent	solutions	to	a	problem	is
"more	 Pythonic".	 The	 goal	 to	 be	 "more	 Pythonic"	 captures	 the	 notion	 that
programming	 is	 part	 engineering	 and	part	 art.	We	 are	 not	 always	 interested	 in
just	making	something	work,	we	also	want	our	solution	to	be	elegant	and	to	be
appreciated	as	elegant	by	our	peers.

Writing	files

To	write	a	file,	you	have	to	open	it	with	mode	"w"	as	a	second	parameter:

>>>	fout	=	open('output.txt',	'w')

>>>	print(fout)

<_io.TextIOWrapper	name='output.txt'	mode='w'	encoding='cp1252'>

If	 the	 file	 already	 exists,	 opening	 it	 in	write	mode	 clears	 out	 the	 old	 data	 and
starts	fresh,	so	be	careful!	If	the	file	doesn't	exist,	a	new	one	is	created.

The	write	method	of	the	file	handle	object	puts	data	into	the	file,	returning	the
number	 of	 characters	written.	 The	 default	 write	mode	 is	 text	 for	writing	 (and

reading)	strings.

>>>	line1	=	"This	here's	the	wattle,\n"

>>>	fout.write(line1)

24

Again,	 the	 file	 object	 keeps	 track	of	where	 it	 is,	 so	 if	 you	 call	write	 again,	 it
adds	the	new	data	to	the	end.

We	 must	 make	 sure	 to	 manage	 the	 ends	 of	 lines	 as	 we	 write	 to	 the	 file	 by
explicitly	inserting	the	newline	character	when	we	want	to	end	a	line.	The	print
statement	automatically	appends	a	newline,	but	the	write	method	does	not	add
the	newline	automatically.

>>>	line2	=	'the	emblem	of	our	land.\n'

>>>	fout.write(line2)

24

When	you	are	done	writing,	you	have	to	close	the	file	to	make	sure	that	the	last
bit	of	data	is	physically	written	to	the	disk	so	it	will	not	be	lost	if	the	power	goes
off.

>>>	fout.close()

We	could	close	the	files	which	we	open	for	read	as	well,	but	we	can	be	a	little
sloppy	if	we	are	only	opening	a	few	files	since	Python	makes	sure	that	all	open
files	are	closed	when	the	program	ends.	When	we	are	writing	files,	we	want	to
explicitly	close	the	files	so	as	to	leave	nothing	to	chance.

Debugging

When	 you	 are	 reading	 and	 writing	 files,	 you	 might	 run	 into	 problems	 with
whitespace.	 These	 errors	 can	 be	 hard	 to	 debug	 because	 spaces,	 tabs,	 and
newlines	are	normally	invisible:

>>>	s	=	'1	2\t	3\n	4'

>>>	print(s)

1	2		3

	4

The	 built-in	 function	 repr	 can	 help.	 It	 takes	 any	 object	 as	 an	 argument	 and
returns	a	string	representation	of	the	object.	For	strings,	it	represents	whitespace
characters	with	backslash	sequences:

>>>	print(repr(s))

'1	2\t	3\n	4'

This	can	be	helpful	for	debugging.

One	 other	 problem	 you	 might	 run	 into	 is	 that	 different	 systems	 use	 different
characters	to	indicate	the	end	of	a	line.	Some	systems	use	a	newline,	represented
\n.	Others	use	a	 return	character,	 represented	\r.	Some	use	both.	 If	you	move
files	between	different	systems,	these	inconsistencies	might	cause	problems.

For	most	systems,	there	are	applications	to	convert	from	one	format	to	another.
You	 can	 find	 them	 (and	 read	 more	 about	 this	 issue)	 at
https://www.wikipedia.org/wiki/Newline.	 Or,	 of	 course,	 you	 could	 write	 one
yourself.

Glossary

catch
To	 prevent	 an	 exception	 from	 terminating	 a	 program	 using	 the	 try	 and
except	statements.

newline
A	special	character	used	in	files	and	strings	to	indicate	the	end	of	a	line.

Pythonic
A	 technique	 that	works	 elegantly	 in	 Python.	 "Using	 try	 and	 except	 is	 the
Pythonic	way	to	recover	from	missing	files".

Quality	Assurance
A	 person	 or	 team	 focused	 on	 insuring	 the	 overall	 quality	 of	 a	 software
product.	QA	is	often	involved	in	testing	a	product	and	identifying	problems
before	the	product	is	released.

text	file

https://wikipedia.org/wiki/Newline

A	sequence	of	characters	stored	in	permanent	storage	like	a	hard	drive.

Exercises

Exercise	1:	Write	a	program	to	read	through	a	file	and	print	the	contents	of
the	file	 (line	by	 line)	all	 in	upper	case.	Executing	the	program	will	 look	as
follows:

python	shout.py

Enter	a	file	name:	mbox-short.txt

FROM	STEPHEN.MARQUARD@UCT.AC.ZA	SAT	JAN		5	09:14:16	2008

RETURN-PATH:	<POSTMASTER@COLLAB.SAKAIPROJECT.ORG>

RECEIVED:	FROM	MURDER	(MAIL.UMICH.EDU	[141.211.14.90])

					BY	FRANKENSTEIN.MAIL.UMICH.EDU	(CYRUS	V2.3.8)	WITH	LMTPA;

					SAT,	05	JAN	2008	09:14:16	-0500

You	can	download	the	file	from	www.py4e.com/code3/mbox-short.txt

Exercise	 2:	 Write	 a	 program	 to	 prompt	 for	 a	 file	 name,	 and	 then	 read
through	the	file	and	look	for	lines	of	the	form:

X-DSPAM-Confidence:	0.8475

When	you	encounter	a	 line	 that	 starts	with	"X-DSPAM-Confidence:"	pull
apart	the	line	to	extract	the	floating-point	number	on	the	line.	Count	these
lines	and	then	compute	the	total	of	 the	spam	confidence	values	from	these
lines.	 When	 you	 reach	 the	 end	 of	 the	 file,	 print	 out	 the	 average	 spam
confidence.

Enter	the	file	name:	mbox.txt

Average	spam	confidence:	0.894128046745

Enter	the	file	name:	mbox-short.txt

Average	spam	confidence:	0.750718518519

Test	your	file	on	the	mbox.txt	and	mbox-short.txt	files.

Exercise	3:	Sometimes	when	programmers	get	bored	or	want	to	have	a	bit
of	 fun,	 they	 add	 a	 harmless	 Easter	 Egg	 to	 their	 program.	 Modify	 the
program	 that	prompts	 the	user	 for	 the	 file	name	 so	 that	 it	prints	 a	 funny
message	when	 the	user	 types	 in	 the	exact	 file	name	"na	na	boo	boo".	The

http://www.py4e.com/code3/mbox-short.txt

program	 should	 behave	 normally	 for	 all	 other	 files	which	 exist	 and	 don't
exist.	Here	is	a	sample	execution	of	the	program:

python	egg.py

Enter	the	file	name:	mbox.txt

There	were	1797	subject	lines	in	mbox.txt

python	egg.py

Enter	the	file	name:	missing.tyxt

File	cannot	be	opened:	missing.tyxt

python	egg.py

Enter	the	file	name:	na	na	boo	boo

NA	NA	BOO	BOO	TO	YOU	-	You	have	been	punk'd!

We	are	not	 encouraging	you	 to	put	Easter	Eggs	 in	 your	programs;	 this	 is
just	an	exercise.

Lists
A	list	is	a	sequence

Like	a	string,	a	list	is	a	sequence	of	values.	In	a	string,	the	values	are	characters;
in	a	list,	they	can	be	any	type.	The	values	in	list	are	called	elements	or	sometimes
items.

There	 are	 several	 ways	 to	 create	 a	 new	 list;	 the	 simplest	 is	 to	 enclose	 the
elements	in	square	brackets	("["	and	"]"):

[10,	20,	30,	40]

['crunchy	frog',	'ram	bladder',	'lark	vomit']

The	first	example	is	a	list	of	four	integers.	The	second	is	a	list	of	three	strings.
The	elements	of	a	list	don't	have	to	be	the	same	type.	The	following	list	contains
a	string,	a	float,	an	integer,	and	(lo!)	another	list:

['spam',	2.0,	5,	[10,	20]]

A	list	within	another	list	is	nested.

A	list	that	contains	no	elements	is	called	an	empty	list;	you	can	create	one	with
empty	brackets,	[].

As	you	might	expect,	you	can	assign	list	values	to	variables:

>>>	cheeses	=	['Cheddar',	'Edam',	'Gouda']

>>>	numbers	=	[17,	123]

>>>	empty	=	[]

>>>	print(cheeses,	numbers,	empty)

['Cheddar',	'Edam',	'Gouda']	[17,	123]	[]

Lists	are	mutable

The	syntax	for	accessing	the	elements	of	a	list	 is	 the	same	as	for	accessing	the
characters	 of	 a	 string:	 the	 bracket	 operator.	The	 expression	 inside	 the	 brackets
specifies	the	index.	Remember	that	the	indices	start	at	0:

>>>	print(cheeses[0])

Cheddar

Unlike	strings,	lists	are	mutable	because	you	can	change	the	order	of	items	in	a
list	or	 reassign	an	 item	in	a	 list.	When	 the	bracket	operator	appears	on	 the	 left
side	of	an	assignment,	it	identifies	the	element	of	the	list	that	will	be	assigned.

>>>	numbers	=	[17,	123]

>>>	numbers[1]	=	5

>>>	print(numbers)

[17,	5]

The	one-th	element	of	numbers,	which	used	to	be	123,	is	now	5.

You	 can	 think	 of	 a	 list	 as	 a	 relationship	 between	 indices	 and	 elements.	 This
relationship	is	called	a	mapping;	each	index	"maps	to"	one	of	the	elements.

List	indices	work	the	same	way	as	string	indices:

Any	integer	expression	can	be	used	as	an	index.

If	 you	 try	 to	 read	 or	 write	 an	 element	 that	 does	 not	 exist,	 you	 get	 an
IndexError.

If	an	index	has	a	negative	value,	it	counts	backward	from	the	end	of	the	list.

The	in	operator	also	works	on	lists.

>>>	cheeses	=	['Cheddar',	'Edam',	'Gouda']

>>>	'Edam'	in	cheeses

True

>>>	'Brie'	in	cheeses

False

Traversing	a	list

The	most	common	way	to	traverse	the	elements	of	a	list	is	with	a	for	loop.	The
syntax	is	the	same	as	for	strings:

for	cheese	in	cheeses:

				print(cheese)

This	works	well	if	you	only	need	to	read	the	elements	of	the	list.	But	if	you	want
to	write	or	update	the	elements,	you	need	the	indices.	A	common	way	to	do	that
is	to	combine	the	functions	range	and	len:

for	i	in	range(len(numbers)):

				numbers[i]	=	numbers[i]	*	2

This	loop	traverses	the	list	and	updates	each	element.	len	returns	the	number	of
elements	in	the	list.	range	returns	a	list	of	indices	from	0	to	n − 1,	where	n	is	the
length	 of	 the	 list.	 Each	 time	 through	 the	 loop,	 i	 gets	 the	 index	 of	 the	 next
element.	The	assignment	statement	in	the	body	uses	i	to	read	the	old	value	of	the
element	and	to	assign	the	new	value.

A	for	loop	over	an	empty	list	never	executes	the	body:

for	x	in	empty:

				print('This	never	happens.')

Although	 a	 list	 can	 contain	 another	 list,	 the	 nested	 list	 still	 counts	 as	 a	 single
element.	The	length	of	this	list	is	four:

['spam',	1,	['Brie',	'Roquefort',	'Pol	le	Veq'],	[1,	2,	3]]

List	operations

The	+	operator	concatenates	lists:

>>>	a	=	[1,	2,	3]

>>>	b	=	[4,	5,	6]

>>>	c	=	a	+	b

>>>	print(c)

[1,	2,	3,	4,	5,	6]

Similarly,	the	*	operator	repeats	a	list	a	given	number	of	times:

>>>	[0]	*	4

[0,	0,	0,	0]

>>>	[1,	2,	3]	*	3

[1,	2,	3,	1,	2,	3,	1,	2,	3]

The	first	example	repeats	four	times.	The	second	example	repeats	the	list	 three
times.

List	slices

The	slice	operator	also	works	on	lists:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	t[1:3]

['b',	'c']

>>>	t[:4]

['a',	'b',	'c',	'd']

>>>	t[3:]

['d',	'e',	'f']

If	 you	 omit	 the	 first	 index,	 the	 slice	 starts	 at	 the	 beginning.	 If	 you	 omit	 the
second,	the	slice	goes	to	the	end.	So	if	you	omit	both,	the	slice	is	a	copy	of	the
whole	list.

>>>	t[:]

['a',	'b',	'c',	'd',	'e',	'f']

Since	 lists	 are	 mutable,	 it	 is	 often	 useful	 to	 make	 a	 copy	 before	 performing
operations	that	fold,	spindle,	or	mutilate	lists.

A	slice	operator	on	the	left	side	of	an	assignment	can	update	multiple	elements:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	t[1:3]	=	['x',	'y']

>>>	print(t)

['a',	'x',	'y',	'd',	'e',	'f']

List	methods

Python	provides	methods	that	operate	on	lists.	For	example,	append	adds	a	new
element	to	the	end	of	a	list:

>>>	t	=	['a',	'b',	'c']

>>>	t.append('d')

>>>	print(t)

['a',	'b',	'c',	'd']

extend	takes	a	list	as	an	argument	and	appends	all	of	the	elements:

>>>	t1	=	['a',	'b',	'c']

>>>	t2	=	['d',	'e']

>>>	t1.extend(t2)

>>>	print(t1)

['a',	'b',	'c',	'd',	'e']

This	example	leaves	t2	unmodified.

sort	arranges	the	elements	of	the	list	from	low	to	high:

>>>	t	=	['d',	'c',	'e',	'b',	'a']

>>>	t.sort()

>>>	print(t)

['a',	'b',	'c',	'd',	'e']

Most	 list	 methods	 are	 void;	 they	 modify	 the	 list	 and	 return	 None.	 If	 you
accidentally	write	t	=	t.sort(),	you	will	be	disappointed	with	the	result.

Deleting	elements

There	are	several	ways	to	delete	elements	from	a	list.	If	you	know	the	index	of
the	element	you	want,	you	can	use	pop:

>>>	t	=	['a',	'b',	'c']

>>>	x	=	t.pop(1)

>>>	print(t)

['a',	'c']

>>>	print(x)

b

pop	 modifies	 the	 list	 and	 returns	 the	 element	 that	 was	 removed.	 If	 you	 don't
provide	an	index,	it	deletes	and	returns	the	last	element.

If	you	don't	need	the	removed	value,	you	can	use	the	del	statement:

>>>	t	=	['a',	'b',	'c']

>>>	del	t[1]

>>>	print(t)

['a',	'c']

If	you	know	 the	element	you	want	 to	 remove	 (but	not	 the	 index),	you	can	use
remove:

>>>	t	=	['a',	'b',	'c']

>>>	t.remove('b')

>>>	print(t)

['a',	'c']

The	return	value	from	remove	is	None.

To	remove	more	than	one	element,	you	can	use	del	with	a	slice	index:

>>>	t	=	['a',	'b',	'c',	'd',	'e',	'f']

>>>	del	t[1:5]

>>>	print(t)

['a',	'f']

As	usual,	 the	slice	selects	all	 the	elements	up	 to,	but	not	 including,	 the	second
index.

Lists	and	functions

There	are	a	number	of	built-in	functions	that	can	be	used	on	lists	that	allow	you
to	quickly	look	through	a	list	without	writing	your	own	loops:

>>>	nums	=	[3,	41,	12,	9,	74,	15]

>>>	print(len(nums))

6

>>>	print(max(nums))

74

>>>	print(min(nums))

3

>>>	print(sum(nums))

154

>>>	print(sum(nums)/len(nums))

25

The	sum()	 function	only	works	when	 the	 list	 elements	are	numbers.	The	other
functions	(max(),	len(),	etc.)	work	with	lists	of	strings	and	other	types	that	can
be	comparable.

We	 could	 rewrite	 an	 earlier	 program	 that	 computed	 the	 average	 of	 a	 list	 of
numbers	entered	by	the	user	using	a	list.

First,	the	program	to	compute	an	average	without	a	list:

total	=	0

count	=	0

while	(True):

				inp	=	input('Enter	a	number:	')

				if	inp	==	'done':	break

				value	=	float(inp)

				total	=	total	+	value

				count	=	count	+	1

average	=	total	/	count

print('Average:',	average)

#	Code:	http://www.py4e.com/code3/avenum.py

In	 this	 program,	we	 have	 count	 and	 total	 variables	 to	 keep	 the	 number	 and
running	 total	 of	 the	 user's	 numbers	 as	 we	 repeatedly	 prompt	 the	 user	 for	 a
number.

We	could	simply	remember	each	number	as	the	user	entered	it	and	use	built-in
functions	to	compute	the	sum	and	count	at	the	end.

numlist	=	list()

while	(True):

				inp	=	input('Enter	a	number:	')

				if	inp	==	'done':	break

				value	=	float(inp)

				numlist.append(value)

average	=	sum(numlist)	/	len(numlist)

print('Average:',	average)

#	Code:	http://www.py4e.com/code3/avelist.py

We	make	 an	 empty	 list	 before	 the	 loop	 starts,	 and	 then	 each	 time	we	 have	 a
number,	we	append	it	to	the	list.	At	the	end	of	the	program,	we	simply	compute
the	sum	of	the	numbers	in	the	list	and	divide	it	by	the	count	of	the	numbers	in
the	list	to	come	up	with	the	average.

Lists	and	strings

A	string	is	a	sequence	of	characters	and	a	list	is	a	sequence	of	values,	but	a	list	of
characters	 is	 not	 the	 same	 as	 a	 string.	 To	 convert	 from	 a	 string	 to	 a	 list	 of
characters,	you	can	use	list:

>>>	s	=	'spam'

>>>	t	=	list(s)

>>>	print(t)

['s',	'p',	'a',	'm']

Because	list	 is	 the	name	of	a	built-in	function,	you	should	avoid	using	it	as	a
variable	 name.	 I	 also	 avoid	 the	 letter	 "l"	 because	 it	 looks	 too	 much	 like	 the
number	"1".	So	that's	why	I	use	"t".

The	list	function	breaks	a	string	into	individual	letters.	If	you	want	to	break	a
string	into	words,	you	can	use	the	split	method:

>>>	s	=	'pining	for	the	fjords'

>>>	t	=	s.split()

>>>	print(t)

['pining',	'for',	'the',	'fjords']

>>>	print(t[2])

the

Once	you	have	used	split	 to	break	the	string	into	a	list	of	words,	you	can	use
the	index	operator	(square	bracket)	to	look	at	a	particular	word	in	the	list.

You	can	call	split	with	 an	optional	 argument	 called	 a	delimiter	 that	 specifies
which	 characters	 to	 use	 as	 word	 boundaries.	 The	 following	 example	 uses	 a
hyphen	as	a	delimiter:

>>>	s	=	'spam-spam-spam'

>>>	delimiter	=	'-'

>>>	s.split(delimiter)

['spam',	'spam',	'spam']

join	 is	 the	 inverse	 of	 split.	 It	 takes	 a	 list	 of	 strings	 and	 concatenates	 the
elements.	join	is	a	string	method,	so	you	have	to	invoke	it	on	the	delimiter	and
pass	the	list	as	a	parameter:

>>>	t	=	['pining',	'for',	'the',	'fjords']

>>>	delimiter	=	'	'

>>>	delimiter.join(t)

'pining	for	the	fjords'

In	 this	 case	 the	 delimiter	 is	 a	 space	 character,	 so	 join	 puts	 a	 space	 between
words.	To	concatenate	strings	without	spaces,	you	can	use	the	empty	string,	"",
as	a	delimiter.

Parsing	lines

Usually	when	we	are	reading	a	file	we	want	to	do	something	to	the	lines	other
than	 just	 printing	 the	whole	 line.	Often	we	want	 to	 find	 the	 "interesting	 lines"
and	 then	parse	 the	 line	 to	 find	 some	 interesting	 part	 of	 the	 line.	What	 if	 we
wanted	to	print	out	the	day	of	the	week	from	those	lines	that	start	with	"From	"?

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

The	split	method	 is	very	effective	when	faced	with	 this	kind	of	problem.	We
can	write	a	small	program	that	looks	for	lines	where	the	line	starts	with	"From	",
split	those	lines,	and	then	print	out	the	third	word	in	the	line:

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				line	=	line.rstrip()

				if	not	line.startswith('From	'):	continue

				words	=	line.split()

				print(words[2])

#	Code:	http://www.py4e.com/code3/search5.py

The	program	produces	the	following	output:

Sat

Fri

Fri

Fri

...

Later,	we	will	learn	increasingly	sophisticated	techniques	for	picking	the	lines	to
work	on	and	how	we	pull	those	lines	apart	to	find	the	exact	bit	of	information	we
are	looking	for.

Objects	and	values

If	we	execute	these	assignment	statements:

a	=	'banana'

b	=	'banana'

we	know	that	a	and	b	both	refer	to	a	string,	but	we	don't	know	whether	they	refer
to	the	same	string.	There	are	two	possible	states:

a

b

‘banana’

‘banana’

a

b
‘banana’

Variables	and	Objects

In	one	case,	a	and	b	refer	to	two	different	objects	that	have	the	same	value.	In	the
second	case,	they	refer	to	the	same	object.

To	 check	whether	 two	 variables	 refer	 to	 the	 same	 object,	 you	 can	 use	 the	 is
operator.

>>>	a	=	'banana'

>>>	b	=	'banana'

>>>	a	is	b

True

In	this	example,	Python	only	created	one	string	object,	and	both	a	and	b	refer	to
it.

But	when	you	create	two	lists,	you	get	two	objects:

>>>	a	=	[1,	2,	3]

>>>	b	=	[1,	2,	3]

>>>	a	is	b

False

In	this	case	we	would	say	that	the	two	lists	are	equivalent,	because	they	have	the
same	elements,	but	not	 identical,	 because	 they	 are	not	 the	 same	object.	 If	 two
objects	are	identical,	they	are	also	equivalent,	but	if	they	are	equivalent,	they	are
not	necessarily	identical.

Until	 now,	we	 have	 been	 using	 "object"	 and	 "value"	 interchangeably,	 but	 it	 is
more	precise	 to	say	 that	an	object	has	a	value.	 If	you	execute	a	=	[1,2,3],	 a
refers	to	a	list	object	whose	value	is	a	particular	sequence	of	elements.	If	another

list	has	the	same	elements,	we	would	say	it	has	the	same	value.

Aliasing

If	a	 refers	 to	 an	object	 and	you	assign	b	=	a,	 then	both	variables	 refer	 to	 the
same	object:

>>>	a	=	[1,	2,	3]

>>>	b	=	a

>>>	b	is	a

True

The	 association	 of	 a	 variable	 with	 an	 object	 is	 called	 a	 reference.	 In	 this
example,	there	are	two	references	to	the	same	object.

An	object	with	more	than	one	reference	has	more	than	one	name,	so	we	say	that
the	object	is	aliased.

If	the	aliased	object	is	mutable,	changes	made	with	one	alias	affect	the	other:

>>>	b[0]	=	17

>>>	print(a)

[17,	2,	3]

Although	this	behavior	can	be	useful,	 it	 is	error-prone.	In	general,	 it	 is	safer	 to
avoid	aliasing	when	you	are	working	with	mutable	objects.

For	immutable	objects	like	strings,	aliasing	is	not	as	much	of	a	problem.	In	this
example:

a	=	'banana'

b	=	'banana'

it	 almost	never	makes	a	difference	whether	a	and	b	 refer	 to	 the	same	string	or
not.

List	arguments

When	you	pass	a	list	to	a	function,	the	function	gets	a	reference	to	the	list.	If	the
function	 modifies	 a	 list	 parameter,	 the	 caller	 sees	 the	 change.	 For	 example,
delete_head	removes	the	first	element	from	a	list:

def	delete_head(t):

				del	t[0]

Here's	how	it	is	used:

>>>	letters	=	['a',	'b',	'c']

>>>	delete_head(letters)

>>>	print(letters)

['b',	'c']

The	parameter	t	and	the	variable	letters	are	aliases	for	the	same	object.

It	is	important	to	distinguish	between	operations	that	modify	lists	and	operations
that	create	new	lists.	For	example,	the	append	method	modifies	a	list,	but	the	+
operator	creates	a	new	list:

>>>	t1	=	[1,	2]

>>>	t2	=	t1.append(3)

>>>	print(t1)

[1,	2,	3]

>>>	print(t2)

None

>>>	t3	=	t1	+	[3]

>>>	print(t3)

[1,	2,	3]

>>>	t1	is	t3

False

This	 difference	 is	 important	 when	 you	 write	 functions	 that	 are	 supposed	 to
modify	lists.	For	example,	this	function	does	not	delete	the	head	of	a	list:

def	bad_delete_head(t):

				t	=	t[1:]														#	WRONG!

The	slice	operator	creates	a	new	list	and	the	assignment	makes	t	refer	to	it,	but
none	of	that	has	any	effect	on	the	list	that	was	passed	as	an	argument.

An	 alternative	 is	 to	 write	 a	 function	 that	 creates	 and	 returns	 a	 new	 list.	 For
example,	tail	returns	all	but	the	first	element	of	a	list:

def	tail(t):

				return	t[1:]

This	function	leaves	the	original	list	unmodified.	Here's	how	it	is	used:

>>>	letters	=	['a',	'b',	'c']

>>>	rest	=	tail(letters)

>>>	print(rest)

['b',	'c']

Exercise	 1:	Write	 a	 function	 called	 chop	 that	 takes	 a	 list	 and	modifies	 it,
removing	 the	 first	 and	 last	 elements,	 and	 returns	 None.	 Then	 write	 a
function	called	middle	that	takes	a	list	and	returns	a	new	list	that	contains
all	but	the	first	and	last	elements.

Debugging

Careless	 use	 of	 lists	 (and	 other	 mutable	 objects)	 can	 lead	 to	 long	 hours	 of
debugging.	Here	are	some	common	pitfalls	and	ways	to	avoid	them:

1.	 Don't	 forget	 that	most	 list	methods	modify	 the	argument	and	 return	None.
This	 is	 the	opposite	of	 the	 string	methods,	which	 return	 a	new	string	 and
leave	the	original	alone.

If	you	are	used	to	writing	string	code	like	this:

word	=	word.strip()

It	is	tempting	to	write	list	code	like	this:

t	=	t.sort()											#	WRONG!

Because	sort	returns	None,	the	next	operation	you	perform	with	t	is	likely
to	fail.

Before	using	list	methods	and	operators,	you	should	read	the	documentation
carefully	and	then	test	them	in	interactive	mode.	The	methods	and	operators
that	lists	share	with	other	sequences	(like	strings)	are	documented	at:

docs.python.org/library/stdtypes.html#common-sequence-operations

The	 methods	 and	 operators	 that	 only	 apply	 to	 mutable	 sequences	 are
documented	at:

docs.python.org/library/stdtypes.html#mutable-sequence-types

2.	 Pick	an	idiom	and	stick	with	it.

Part	of	the	problem	with	lists	is	that	there	are	too	many	ways	to	do	things.
For	example,	 to	 remove	an	element	 from	a	 list,	you	can	use	pop,	remove,
del,	or	even	a	slice	assignment.

To	add	an	element,	you	can	use	 the	append	method	or	the	+	operator.	But
don't	forget	that	these	are	right:

t.append(x)

t	=	t	+	[x]

And	these	are	wrong:

t.append([x])										#	WRONG!

t	=	t.append(x)								#	WRONG!

t	+	[x]																#	WRONG!

t	=	t	+	x														#	WRONG!

https://docs.python.org/library/stdtypes.html#common-sequence-operations
https://docs.python.org/library/stdtypes.html#mutable-sequence-types

Try	 out	 each	 of	 these	 examples	 in	 interactive	 mode	 to	 make	 sure	 you
understand	 what	 they	 do.	 Notice	 that	 only	 the	 last	 one	 causes	 a	 runtime
error;	the	other	three	are	legal,	but	they	do	the	wrong	thing.

3.	 Make	copies	to	avoid	aliasing.

If	you	want	to	use	a	method	like	sort	that	modifies	the	argument,	but	you
need	to	keep	the	original	list	as	well,	you	can	make	a	copy.

orig	=	t[:]

t.sort()

In	 this	 example	 you	 could	 also	 use	 the	 built-in	 function	 sorted,	 which
returns	a	new,	sorted	list	and	leaves	the	original	alone.	But	in	that	case	you
should	avoid	using	sorted	as	a	variable	name!

4.	 Lists,	split,	and	files

When	we	 read	 and	 parse	 files,	 there	 are	many	 opportunities	 to	 encounter
input	that	can	crash	our	program	so	it	is	a	good	idea	to	revisit	the	guardian
pattern	when	it	comes	to	writing	programs	that	read	through	a	file	and	look
for	a	"needle	in	the	haystack".

Let's	revisit	our	program	that	is	looking	for	the	day	of	the	week	on	the	from
lines	of	our	file:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

Since	we	are	breaking	this	line	into	words,	we	could	dispense	with	the	use
of	startswith	and	simply	look	at	the	first	word	of	the	line	to	determine	if
we	are	interested	in	the	line	at	all.	We	can	use	continue	 to	skip	lines	that
don't	have	"From"	as	the	first	word	as	follows:

fhand	=	open('mbox-short.txt')

for	line	in	fhand:

				words	=	line.split()

				if	words[0]	!=	'From'	:	continue

				print(words[2])

This	 looks	 much	 simpler	 and	 we	 don't	 even	 need	 to	 do	 the	 rstrip	 to
remove	the	newline	at	the	end	of	the	file.	But	is	it	better?

python	search8.py

Sat

Traceback	(most	recent	call	last):

		File	"search8.py",	line	5,	in	<module>

				if	words[0]	!=	'From'	:	continue

IndexError:	list	index	out	of	range

It	kind	of	works	and	we	see	 the	day	from	the	first	 line	 (Sat),	but	 then	 the
program	 fails	with	a	 traceback	error.	What	went	wrong?	What	messed-up
data	caused	our	elegant,	clever,	and	very	Pythonic	program	to	fail?

You	could	stare	at	it	for	a	long	time	and	puzzle	through	it	or	ask	someone
for	help,	but	the	quicker	and	smarter	approach	is	to	add	a	print	 statement.
The	best	place	to	add	the	print	statement	is	right	before	the	line	where	the
program	failed	and	print	out	the	data	that	seems	to	be	causing	the	failure.

Now	 this	 approach	may	generate	 a	 lot	of	 lines	of	output,	 but	 at	 least	you
will	 immediately	have	 some	clue	as	 to	 the	problem	at	hand.	So	we	add	a
print	 of	 the	 variable	 words	 right	 before	 line	 five.	 We	 even	 add	 a	 prefix
"Debug:"	 to	 the	 line	so	we	can	keep	our	 regular	output	separate	 from	our
debug	output.

for	line	in	fhand:

				words	=	line.split()

				print('Debug:',	words)

				if	words[0]	!=	'From'	:	continue

				print(words[2])

When	we	run	the	program,	a	 lot	of	output	scrolls	off	 the	screen	but	at	 the
end,	we	see	our	debug	output	and	the	traceback	so	we	know	what	happened
just	before	the	traceback.

Debug:	['X-DSPAM-Confidence:',	'0.8475']

Debug:	['X-DSPAM-Probability:',	'0.0000']

Debug:	[]

Traceback	(most	recent	call	last):

		File	"search9.py",	line	6,	in	<module>

				if	words[0]	!=	'From'	:	continue

IndexError:	list	index	out	of	range

Each	debug	line	is	printing	the	list	of	words	which	we	get	when	we	split
the	line	into	words.	When	the	program	fails,	the	list	of	words	is	empty	[].	If
we	open	the	file	in	a	text	editor	and	look	at	the	file,	at	that	point	it	looks	as
follows:

X-DSPAM-Result:	Innocent

X-DSPAM-Processed:	Sat	Jan		5	09:14:16	2008

X-DSPAM-Confidence:	0.8475

X-DSPAM-Probability:	0.0000

Details:	http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

The	error	occurs	when	our	program	encounters	a	blank	line!	Of	course	there
are	"zero	words"	on	a	blank	line.	Why	didn't	we	think	of	that	when	we	were
writing	 the	 code?	 When	 the	 code	 looks	 for	 the	 first	 word	 (word[0])	 to
check	to	see	if	it	matches	"From",	we	get	an	"index	out	of	range"	error.

This	 of	 course	 is	 the	 perfect	 place	 to	 add	 some	 guardian	 code	 to	 avoid
checking	the	first	word	if	the	first	word	is	not	there.	There	are	many	ways
to	protect	this	code;	we	will	choose	to	check	the	number	of	words	we	have
before	we	look	at	the	first	word:

fhand	=	open('mbox-short.txt')

count	=	0

for	line	in	fhand:

				words	=	line.split()

				#	print('Debug:',	words)

				if	len(words)	==	0	:	continue

				if	words[0]	!=	'From'	:	continue

				print(words[2])

First	we	commented	out	the	debug	print	statement	instead	of	removing	it,	in
case	our	modification	fails	and	we	need	to	debug	again.	Then	we	added	a
guardian	statement	that	checks	to	see	if	we	have	zero	words,	and	if	so,	we
use	continue	to	skip	to	the	next	line	in	the	file.

We	can	think	of	the	two	continue	statements	as	helping	us	refine	the	set	of
lines	 which	 are	 "interesting"	 to	 us	 and	 which	 we	 want	 to	 process	 some
more.	A	line	which	has	no	words	is	"uninteresting"	to	us	so	we	skip	to	the

next	 line.	 A	 line	 which	 does	 not	 have	 "From"	 as	 its	 first	 word	 is
uninteresting	to	us	so	we	skip	it.

The	 program	 as	modified	 runs	 successfully,	 so	 perhaps	 it	 is	 correct.	 Our
guardian	 statement	 does	make	 sure	 that	 the	words[0]	 will	 never	 fail,	 but
perhaps	 it	 is	not	 enough.	When	we	are	programming,	we	must	 always	be
thinking,	"What	might	go	wrong?"

Exercise	2:	Figure	out	which	line	of	the	above	program	is	still	not	properly
guarded.	See	if	you	can	construct	a	text	file	which	causes	the	program	to	fail
and	then	modify	the	program	so	that	the	line	is	properly	guarded	and	test	it
to	make	sure	it	handles	your	new	text	file.

Exercise	3:	Rewrite	the	guardian	code	in	the	above	example	without	two	if
statements.	Instead,	use	a	compound	logical	expression	using	the	or	logical
operator	with	a	single	if	statement.

Glossary

aliasing
A	circumstance	where	two	or	more	variables	refer	to	the	same	object.

delimiter
A	character	or	string	used	to	indicate	where	a	string	should	be	split.

element
One	of	the	values	in	a	list	(or	other	sequence);	also	called	items.

equivalent
Having	the	same	value.

index
An	integer	value	that	indicates	an	element	in	a	list.

identical
Being	the	same	object	(which	implies	equivalence).

list
A	sequence	of	values.

list	traversal
The	sequential	accessing	of	each	element	in	a	list.

nested	list
A	list	that	is	an	element	of	another	list.

object
Something	a	variable	can	refer	to.	An	object	has	a	type	and	a	value.

reference
The	association	between	a	variable	and	its	value.

Exercises

Exercise	4:	Find	all	unique	words	in	a	file

Shakespeare	 used	 over	 20,000	 words	 in	 his	 works.	 But	 how	 would	 you
determine	 that?	 How	 would	 you	 produce	 the	 list	 of	 all	 the	 words	 that
Shakespeare	used?	Would	you	download	all	his	work,	read	it	and	track	all
unique	words	by	hand?

Let's	 use	 Python	 to	 achieve	 that	 instead.	 List	 all	 unique	words,	 sorted	 in
alphabetical	order,	that	are	stored	in	a	file	romeo.txt	containing	a	subset	of
Shakespeare's	work.

To	get	started,	download	a	copy	of	the	file	www.py4e.com/code3/romeo.txt.
Create	 a	 list	 of	 unique	words,	which	will	 contain	 the	 final	 result.	Write	 a
program	to	open	the	file	romeo.txt	and	read	 it	 line	by	 line.	For	each	 line,
split	 the	 line	 into	a	 list	of	words	using	 the	split	 function.	For	each	word,
check	to	see	if	the	word	is	already	in	the	list	of	unique	words.	If	the	word	is
not	 in	 the	 list	 of	 unique	 words,	 add	 it	 to	 the	 list.	 When	 the	 program
completes,	sort	and	print	the	list	of	unique	words	in	alphabetical	order.

Enter	file:	romeo.txt

['Arise',	'But',	'It',	'Juliet',	'Who',	'already',

'and',	'breaks',	'east',	'envious',	'fair',	'grief',

'is',	'kill',	'light',	'moon',	'pale',	'sick',	'soft',

'sun',	'the',	'through',	'what',	'window',

'with',	'yonder']

Exercise	5:	Minimalist	Email	Client.

MBOX	(mail	box)	is	a	popular	file	format	to	store	and	share	a	collection	of
emails.	 This	 was	 used	 by	 early	 email	 servers	 and	 desktop	 apps.	Without
getting	 into	 too	 many	 details,	 MBOX	 is	 a	 text	 file,	 which	 stores	 emails
consecutively.	Emails	are	separated	by	a	special	line	which	starts	with	From
(notice	the	space).	Importantly,	 lines	starting	with	From:	 (notice	 the	colon)
describes	the	email	itself	and	does	not	act	as	a	separator.	Imagine	you	wrote
a	minimalist	email	app,	that	lists	the	email	of	the	senders	in	the	user's	Inbox

http://www.py4e.com/code3/romeo.txt

and	counts	the	number	of	emails.

Write	a	program	to	read	through	the	mail	box	data	and	when	you	find	line
that	starts	with	"From",	you	will	 split	 the	 line	 into	words	using	 the	split
function.	We	 are	 interested	 in	who	 sent	 the	message,	 which	 is	 the	 second
word	on	the	From	line.

From	stephen.marquard@uct.ac.za	Sat	Jan	5	09:14:16	2008

You	will	parse	the	From	line	and	print	out	the	second	word	for	each	From
line,	 then	 you	 will	 also	 count	 the	 number	 of	 From	 (not	 From:)	 lines	 and
print	out	a	count	at	the	end.	This	is	a	good	sample	output	with	a	few	lines
removed:

python	fromcount.py

Enter	a	file	name:	mbox-short.txt

stephen.marquard@uct.ac.za

louis@media.berkeley.edu

zqian@umich.edu

[...some	output	removed...]

ray@media.berkeley.edu

cwen@iupui.edu

cwen@iupui.edu

cwen@iupui.edu

There	were	27	lines	in	the	file	with	From	as	the	first	word

Exercise	6:	Rewrite	the	program	that	prompts	the	user	for	a	list	of	numbers
and	prints	out	the	maximum	and	minimum	of	the	numbers	at	the	end	when
the	user	 enters	"done".	Write	 the	program	 to	 store	 the	numbers	 the	user
enters	 in	 a	 list	 and	 use	 the	 max()	 and	 min()	 functions	 to	 compute	 the
maximum	and	minimum	numbers	after	the	loop	completes.

Enter	a	number:	6

Enter	a	number:	2

Enter	a	number:	9

Enter	a	number:	3

Enter	a	number:	5

Enter	a	number:	done

Maximum:	9.0

Minimum:	2.0

Dictionaries
A	dictionary	is	like	a	list,	but	more	general.	In	a	list,	the	index	positions	have	to
be	integers;	in	a	dictionary,	the	indices	can	be	(almost)	any	type.

You	can	think	of	a	dictionary	as	a	mapping	between	a	set	of	indices	(which	are
called	keys)	and	a	set	of	values.	Each	key	maps	to	a	value.	The	association	of	a
key	and	a	value	is	called	a	key-value	pair	or	sometimes	an	item.

As	 an	 example,	 we'll	 build	 a	 dictionary	 that	 maps	 from	 English	 to	 Spanish
words,	so	the	keys	and	the	values	are	all	strings.

The	function	dict	creates	a	new	dictionary	with	no	items.	Because	dict	 is	 the
name	of	a	built-in	function,	you	should	avoid	using	it	as	a	variable	name.

>>>	eng2sp	=	dict()

>>>	print(eng2sp)

{}

The	 curly	 brackets,	 {},	 represent	 an	 empty	 dictionary.	 To	 add	 items	 to	 the
dictionary,	you	can	use	square	brackets:

>>>	eng2sp['one']	=	'uno'

This	line	creates	an	item	that	maps	from	the	key	'one'	to	the	value	"uno".	If	we
print	the	dictionary	again,	we	see	a	key-value	pair	with	a	colon	between	the	key
and	value:

>>>	print(eng2sp)

{'one':	'uno'}

This	output	 format	 is	also	an	 input	 format.	For	example,	you	can	create	a	new
dictionary	with	three	items.

>>>	eng2sp	=	{'one':	'uno',	'two':	'dos',	'three':	'tres'}

>>>	print(eng2sp)

{'one':	'uno',	'two':	'dos',	'three':	'tres'}

Since	Python	3.7x	the	order	of	key-value	pairs	is	the	same	as	their	input	order,
i.e.	dictionaries	are	now	ordered	structures.

But	 that	 doesn't	 really	 matter	 because	 the	 elements	 of	 a	 dictionary	 are	 never
indexed	 with	 integer	 indices.	 Instead,	 you	 use	 the	 keys	 to	 look	 up	 the
corresponding	values:

>>>	print(eng2sp['two'])

'dos'

The	key	'two'	always	maps	to	the	value	"dos"	so	the	order	of	the	items	doesn't
matter.

If	the	key	isn't	in	the	dictionary,	you	get	an	exception:

>>>	print(eng2sp['four'])

KeyError:	'four'

The	len	function	works	on	dictionaries;	it	returns	the	number	of	key-value	pairs:

>>>	len(eng2sp)

3

The	in	operator	works	on	dictionaries;	it	tells	you	whether	something	appears	as
a	key	in	the	dictionary	(appearing	as	a	value	is	not	good	enough).

>>>	'one'	in	eng2sp

True

>>>	'uno'	in	eng2sp

False

To	 see	whether	 something	 appears	 as	 a	 value	 in	 a	 dictionary,	 you	 can	 use	 the
method	values,	which	returns	the	values	as	a	type	that	can	be	converted	to	a	list,
and	then	use	the	in	operator:

>>>	vals	=	list(eng2sp.values())

>>>	'uno'	in	vals

True

The	in	operator	uses	different	algorithms	 for	 lists	and	dictionaries.	For	 lists,	 it
uses	a	linear	search	algorithm.	As	the	list	gets	longer,	the	search	time	gets	longer
in	 direct	 proportion	 to	 the	 length	 of	 the	 list.	 For	 dictionaries,	 Python	 uses	 an
algorithm	 called	 a	hash	 table	 that	 has	 a	 remarkable	 property:	 the	 in	 operator
takes	about	 the	same	amount	of	 time	no	matter	how	many	items	there	are	 in	a
dictionary.	I	won't	explain	why	hash	functions	are	so	magical,	but	you	can	read
more	about	it	at	wikipedia.org/wiki/Hash_table.

Exercise	1:	Download	a	copy	of	the	file	www.py4e.com/code3/words.txt

Write	a	program	that	reads	the	words	in	words.txt	and	stores	them	as	keys
in	a	dictionary.	It	doesn't	matter	what	the	values	are.	Then	you	can	use	the
in	operator	as	a	fast	way	to	check	whether	a	string	is	in	the	dictionary.

Dictionary	as	a	set	of	counters

Suppose	 you	 are	 given	 a	 string	 and	 you	want	 to	 count	 how	many	 times	 each
letter	appears.	There	are	several	ways	you	could	do	it:

1.	 You	could	create	26	variables,	one	for	each	letter	of	the	alphabet.	Then	you
could	 traverse	 the	 string	 and,	 for	 each	 character,	 increment	 the
corresponding	counter,	probably	using	a	chained	conditional.

2.	 You	 could	 create	 a	 list	 with	 26	 elements.	 Then	 you	 could	 convert	 each
character	to	a	number	(using	the	built-in	function	ord),	use	 the	number	as
an	index	into	the	list,	and	increment	the	appropriate	counter.

3.	 You	could	create	a	dictionary	with	characters	as	keys	and	counters	as	 the
corresponding	values.	The	first	time	you	see	a	character,	you	would	add	an
item	 to	 the	 dictionary.	 After	 that	 you	 would	 increment	 the	 value	 of	 an

https://wikipedia.org/wiki/Hash_table
http://www.py4e.com/code3/words.txt

existing	item.

Each	 of	 these	 options	 performs	 the	 same	 computation,	 but	 each	 of	 them
implements	that	computation	in	a	different	way.

An	 implementation	 is	 a	 way	 of	 performing	 a	 computation;	 some
implementations	 are	 better	 than	 others.	 For	 example,	 an	 advantage	 of	 the
dictionary	 implementation	 is	 that	we	 don't	 have	 to	 know	 ahead	 of	 time	which
letters	appear	in	the	string	and	we	only	have	to	make	room	for	the	letters	that	do
appear.

Here	is	what	the	code	might	look	like:

word	=	'brontosaurus'

d	=	dict()

for	c	in	word:

				if	c	not	in	d:

								d[c]	=	1

				else:

								d[c]	=	d[c]	+	1

print(d)

We	are	effectively	computing	a	histogram,	which	is	a	statistical	term	for	a	set	of
counters	(or	frequencies).

The	for	loop	traverses	the	string.	Each	time	through	the	loop,	if	the	character	c
is	not	in	the	dictionary,	we	create	a	new	item	with	key	c	and	the	initial	value	1
(since	 we	 have	 seen	 this	 letter	 once).	 If	 c	 is	 already	 in	 the	 dictionary	 we
increment	d[c].

Here's	the	output	of	the	program:

{'a':	1,	'b':	1,	'o':	2,	'n':	1,	's':	2,	'r':	2,	'u':	2,	't':	1}

The	 histogram	 indicates	 that	 the	 letters	 "a"	 and	 "b"	 appear	 once;	 "o"	 appears
twice,	and	so	on.

Dictionaries	have	a	method	called	get	that	takes	a	key	and	a	default	value.	If	the
key	appears	in	the	dictionary,	get	 returns	 the	corresponding	value;	otherwise	 it
returns	the	default	value.	For	example:

>>>	counts	=	{	'chuck'	:	1	,	'annie'	:	42,	'jan':	100}

>>>	print(counts.get('jan',	0))

100

>>>	print(counts.get('tim',	0))

0

We	can	 use	get	 to	write	 our	 histogram	 loop	more	 concisely.	Because	 the	get
method	automatically	handles	the	case	where	a	key	is	not	in	a	dictionary,	we	can
reduce	four	lines	down	to	one	and	eliminate	the	if	statement.

word	=	'brontosaurus'

d	=	dict()

for	c	in	word:

				d[c]	=	d.get(c,0)	+	1

print(d)

The	use	of	the	get	method	to	simplify	this	counting	loop	ends	up	being	a	very
commonly	used	"idiom"	in	Python	and	we	will	use	it	many	times	in	the	rest	of
the	 book.	 So	 you	 should	 take	 a	 moment	 and	 compare	 the	 loop	 using	 the	 if
statement	and	in	operator	with	the	loop	using	the	get	method.	They	do	exactly
the	same	thing,	but	one	is	more	succinct.

Dictionaries	and	files

One	of	the	common	uses	of	a	dictionary	is	to	count	the	occurrence	of	words	in	a
file	with	 some	written	 text.	 Let's	 start	with	 a	 very	 simple	 file	 of	words	 taken
from	the	text	of	Romeo	and	Juliet.

For	the	first	set	of	examples,	we	will	use	a	shortened	and	simplified	version	of
the	text	with	no	punctuation.	Later	we	will	work	with	the	text	of	the	scene	with
punctuation	included.

But	soft	what	light	through	yonder	window	breaks

It	is	the	east	and	Juliet	is	the	sun

Arise	fair	sun	and	kill	the	envious	moon

Who	is	already	sick	and	pale	with	grief

We	will	write	a	Python	program	to	read	through	the	lines	of	the	file,	break	each
line	into	a	list	of	words,	and	then	loop	through	each	of	the	words	in	the	line	and

count	each	word	using	a	dictionary.

You	will	see	that	we	have	two	for	loops.	The	outer	loop	is	reading	the	lines	of
the	 file	 and	 the	 inner	 loop	 is	 iterating	 through	 each	 of	 the	 words	 on	 that
particular	line.	This	is	an	example	of	a	pattern	called	nested	loops	because	one	of
the	loops	is	the	outer	loop	and	the	other	loop	is	the	inner	loop.

Because	 the	 inner	 loop	 executes	 all	 of	 its	 iterations	 each	 time	 the	 outer	 loop
makes	a	single	iteration,	we	think	of	the	inner	loop	as	iterating	"more	quickly"
and	the	outer	loop	as	iterating	more	slowly.

The	combination	of	the	two	nested	loops	ensures	that	we	will	count	every	word
on	every	line	of	the	input	file.

fname	=	input('Enter	the	file	name:	')

try:

				fhand	=	open(fname)

except:

				print('File	cannot	be	opened:',	fname)

				exit()

counts	=	dict()

for	line	in	fhand:

				words	=	line.split()

				for	word	in	words:

								if	word	not	in	counts:

												counts[word]	=	1

								else:

												counts[word]	+=	1

print(counts)

#	Code:	http://www.py4e.com/code3/count1.py

In	our	else	statement,	we	use	the	more	compact	alternative	for	 incrementing	a
variable.	counts[word]	+=	1	is	equivalent	to	counts[word]	=	counts[word]	+
1.	Either	method	can	be	used	 to	change	 the	value	of	a	variable	by	any	desired
amount.	Similar	alternatives	exist	for	-=,	*=,	and	/=.

When	we	run	the	program,	we	see	a	raw	dump	of	all	of	the	counts	in	unsorted
hash	order.	(the	romeo.txt	file	is	available	at	www.py4e.com/code3/romeo.txt)

http://www.py4e.com/code3/romeo.txt

python	count1.py

Enter	the	file	name:	romeo.txt

{'But':	1,	'soft':	1,	'what':	1,	'light':	1,	'through':	1,	'yonder':	1,

'window':	1,	'breaks':	1,	'It':	1,	'is':	3,	'the':	3,	'east':	1,	'and':	3,

'Juliet':	1,	'sun':	2,	'Arise':	1,	'fair':	1,	'kill':	1,	'envious':	1,

'moon':	1,	'Who':	1,	'already':	1,	'sick':	1,	'pale':	1,	'with':	1,

'grief':	1}

It	is	a	bit	inconvenient	to	look	through	the	dictionary	to	find	the	most	common
words	and	their	counts,	so	we	need	to	add	some	more	Python	code	to	get	us	the
output	that	will	be	more	helpful.

Looping	and	dictionaries

If	you	use	a	dictionary	as	the	sequence	in	a	for	statement,	it	traverses	the	keys	of
the	dictionary.	This	loop	prints	each	key	and	the	corresponding	value:

counts	=	{	'chuck'	:	1	,	'annie'	:	42,	'jan':	100}

for	key	in	counts:

				print(key,	counts[key])

Here's	what	the	output	looks	like:

chuck	1

annie	42

jan	100

Again,	the	keys	are	ordered.

We	 can	 use	 this	 pattern	 to	 implement	 the	 various	 loop	 idioms	 that	 we	 have
described	earlier.	For	example	if	we	wanted	to	find	all	the	entries	in	a	dictionary
with	a	value	above	ten,	we	could	write	the	following	code:

counts	=	{	'chuck'	:	1	,	'annie'	:	42,	'jan':	100}

for	key	in	counts:

				if	counts[key]	>	10	:

								print(key,	counts[key])

The	 for	 loop	 iterates	 through	 the	 keys	 of	 the	 dictionary,	 so	 we	 must	 use	 the

index	operator	to	retrieve	the	corresponding	value	for	each	key.	Here's	what	the
output	looks	like:

annie	42

jan	100

We	see	only	the	entries	with	a	value	above	10.

If	you	want	 to	print	 the	keys	 in	alphabetical	order,	you	 first	make	a	 list	of	 the
keys	in	the	dictionary	using	the	keys	method	available	in	dictionary	objects,	and
then	 sort	 that	 list	 and	 loop	 through	 the	 sorted	 list,	 looking	 up	 each	 key	 and
printing	out	key-value	pairs	in	sorted	order	as	follows:

counts	=	{	'chuck'	:	1	,	'annie'	:	42,	'jan':	100}

lst	=	list(counts.keys())

print(lst)

lst.sort()

for	key	in	lst:

				print(key,	counts[key])

Here's	what	the	output	looks	like:

['chuck',	'annie',	'jan']

annie	42

chuck	1

jan	100

First	you	see	the	list	of	keys	in	non-alphabetical	order	that	we	get	from	the	keys
method.	Then	we	see	the	key-value	pairs	in	alphabetical	order	from	the	for	loop.

Advanced	text	parsing

In	 the	 above	 example	 using	 the	 file	 romeo.txt,	 we	made	 the	 file	 as	 simple	 as
possible	 by	 removing	 all	 punctuation	 by	 hand.	 The	 actual	 text	 has	 lots	 of
punctuation,	as	shown	below.

But,	soft!	what	light	through	yonder	window	breaks?

It	is	the	east,	and	Juliet	is	the	sun.

Arise,	fair	sun,	and	kill	the	envious	moon,

Who	is	already	sick	and	pale	with	grief,

Since	 the	 Python	 split	 function	 looks	 for	 spaces	 and	 treats	 words	 as	 tokens
separated	 by	 spaces,	 we	 would	 treat	 the	 words	 "soft!"	 and	 "soft"	 as	 different
words	and	create	a	separate	dictionary	entry	for	each	word.

Also	 since	 the	 file	 has	 capitalization,	 we	 would	 treat	 "who"	 and	 "Who"	 as
different	words	with	different	counts.

We	 can	 solve	 both	 these	 problems	 by	 using	 the	 string	 methods	 lower,
punctuation,	and	translate.	The	translate	is	the	most	subtle	of	the	methods.
Here	is	the	documentation	for	translate:

line.translate(str.maketrans(fromstr,	tostr,	deletestr))

Replace	 the	 characters	 in	fromstr	 with	 the	 character	 in	 the	 same	 position	 in
tostr	and	delete	all	characters	that	are	in	deletestr.	The	fromstr	and	tostr
can	be	empty	strings	and	the	deletestr	parameter	can	be	omitted.

We	will	not	specify	the	tostr	but	we	will	use	the	deletestr	parameter	to	delete
all	of	the	punctuation.	We	will	even	let	Python	tell	us	the	list	of	characters	that	it
considers	"punctuation":

>>>	import	string

>>>	string.punctuation

'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'

The	parameters	used	by	translate	were	different	in	Python	2.0.

We	make	the	following	modifications	to	our	program:

import	string

fname	=	input('Enter	the	file	name:	')

try:

				fhand	=	open(fname)

except:

				print('File	cannot	be	opened:',	fname)

				exit()

counts	=	dict()

for	line	in	fhand:

				line	=	line.rstrip()

				line	=	line.translate(line.maketrans('',	'',	string.punctuation))

				line	=	line.lower()

				words	=	line.split()

				for	word	in	words:

								if	word	not	in	counts:

												counts[word]	=	1

								else:

												counts[word]	+=	1

print(counts)

#	Code:	http://www.py4e.com/code3/count2.py

Part	of	learning	the	"Art	of	Python"	or	"Thinking	Pythonically"	is	realizing	that
Python	often	has	built-in	capabilities	for	many	common	data	analysis	problems.
Over	 time,	 you	 will	 see	 enough	 example	 code	 and	 read	 enough	 of	 the
documentation	 to	 know	 where	 to	 look	 to	 see	 if	 someone	 has	 already	 written
something	that	makes	your	job	much	easier.

The	following	is	an	abbreviated	version	of	the	output:

Enter	the	file	name:	romeo-full.txt

{'romeo':	40,	'and':	42,	'juliet':	32,	'act':	1,	'2':	2,	'scene':	2,

'ii':	1,	'capulets':	1,	'orchard':	2,	'enter':	1,	'he':	5,	'jests':	1,

'at':	9,	'scars':	1,	'that':	30,	'never':	2,	'felt':	1,	'a':	24,	'wound':	1,

'appears':	1,	'above':	6,	'window':	2,	'but':	18,	'soft':	1,	'what':	11,

'light':	5,	'through':	2,	'yonder':	2,	'breaks':	1,	...}

Looking	through	this	output	is	still	unwieldy	and	we	can	use	Python	to	give	us
exactly	what	we	 are	 looking	 for,	 but	 to	 do	 so,	we	 need	 to	 learn	 about	 Python
tuples.	We	will	pick	up	this	example	once	we	learn	about	tuples.

Debugging

As	you	work	with	bigger	datasets	it	can	become	unwieldy	to	debug	by	printing
and	 checking	 data	 by	 hand.	 Here	 are	 some	 suggestions	 for	 debugging	 large
datasets:

Scale	down	the	input

If	possible,	reduce	the	size	of	the	dataset.	For	example	if	the	program	reads

a	text	file,	start	with	just	the	first	10	lines,	or	with	the	smallest	example	you
can	 find.	 You	 can	 either	 edit	 the	 files	 themselves,	 or	 (better)	 modify	 the
program	so	it	reads	only	the	first	n	lines.

If	there	is	an	error,	you	can	reduce	n	to	the	smallest	value	that	manifests	the
error,	and	then	increase	it	gradually	as	you	find	and	correct	errors.

Check	summaries	and	types

Instead	 of	 printing	 and	 checking	 the	 entire	 dataset,	 consider	 printing
summaries	of	the	data:	for	example,	the	number	of	items	in	a	dictionary	or
the	total	of	a	list	of	numbers.

A	common	cause	of	runtime	errors	is	a	value	that	is	not	the	right	type.	For
debugging	this	kind	of	error,	it	is	often	enough	to	print	the	type	of	a	value.

Write	self-checks

Sometimes	 you	 can	 write	 code	 to	 check	 for	 errors	 automatically.	 For
example,	if	you	are	computing	the	average	of	a	list	of	numbers,	you	could
check	that	the	result	is	not	greater	than	the	largest	element	in	the	list	or	less
than	the	smallest.	This	 is	called	a	"sanity	check"	because	it	detects	results
that	are	"completely	illogical".

Another	kind	of	check	compares	 the	results	of	 two	different	computations
to	see	if	they	are	consistent.	This	is	called	a	"consistency	check".

Pretty	print	the	output
Formatting	debugging	output	can	make	it	easier	to	spot	an	error.

Again,	 time	 you	 spend	 building	 scaffolding	 can	 reduce	 the	 time	 you	 spend
debugging.

Glossary

dictionary
A	mapping	from	a	set	of	keys	to	their	corresponding	values.

hashtable
The	algorithm	used	to	implement	Python	dictionaries.

hash	function
A	function	used	by	a	hashtable	to	compute	the	location	for	a	key.

histogram
A	set	of	counters.

implementation
A	way	of	performing	a	computation.

item
Another	name	for	a	key-value	pair.

key
An	object	that	appears	in	a	dictionary	as	the	first	part	of	a	key-value	pair.

key-value	pair
The	representation	of	the	mapping	from	a	key	to	a	value.

lookup
A	dictionary	operation	that	takes	a	key	and	finds	the	corresponding	value.

nested	loops
When	there	are	one	or	more	loops	"inside"	of	another	loop.	The	inner	loop
runs	to	completion	each	time	the	outer	loop	runs	once.

value
An	object	that	appears	in	a	dictionary	as	the	second	part	of	a	key-value	pair.
This	is	more	specific	than	our	previous	use	of	the	word	"value".

Exercises

Exercise	2:	Write	a	program	that	categorizes	each	mail	message	by	which
day	of	 the	week	 the	 commit	was	done.	To	do	 this	 look	 for	 lines	 that	 start
with	 "From",	 then	 look	 for	 the	 third	 word	 and	 keep	 a	 running	 count	 of
each	 of	 the	 days	 of	 the	 week.	 At	 the	 end	 of	 the	 program	 print	 out	 the
contents	of	your	dictionary	(order	does	not	matter).

Sample	Line:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

Sample	Execution:

python	dow.py

Enter	a	file	name:	mbox-short.txt

{'Fri':	20,	'Thu':	6,	'Sat':	1}

Exercise	3:	Write	a	program	to	read	through	a	mail	log,	build	a	histogram
using	a	dictionary	to	count	how	many	messages	have	come	from	each	email
address,	and	print	the	dictionary.

Enter	file	name:	mbox-short.txt

{'gopal.ramasammycook@gmail.com':	1,	'louis@media.berkeley.edu':	3,

'cwen@iupui.edu':	5,	'antranig@caret.cam.ac.uk':	1,

'rjlowe@iupui.edu':	2,	'gsilver@umich.edu':	3,

'david.horwitz@uct.ac.za':	4,	'wagnermr@iupui.edu':	1,

'zqian@umich.edu':	4,	'stephen.marquard@uct.ac.za':	2,

'ray@media.berkeley.edu':	1}

Exercise	4:	Add	code	to	the	above	program	to	figure	out	who	has	the	most
messages	in	the	file.	After	all	the	data	has	been	read	and	the	dictionary	has
been	 created,	 look	 through	 the	 dictionary	 using	 a	 maximum	 loop	 (see
Chapter	 5:	 Maximum	 and	 minimum	 loops)	 to	 find	 who	 has	 the	 most
messages	and	print	how	many	messages	the	person	has.

Enter	a	file	name:	mbox-short.txt

cwen@iupui.edu	5

Enter	a	file	name:	mbox.txt

zqian@umich.edu	195

Exercise	5:	This	program	records	the	domain	name	(instead	of	the	address)
where	 the	message	was	sent	 from	instead	of	who	 the	mail	came	from	(i.e.,
the	whole	email	address).	At	the	end	of	the	program,	print	out	the	contents
of	your	dictionary.

python	schoolcount.py

Enter	a	file	name:	mbox-short.txt

{'media.berkeley.edu':	4,	'uct.ac.za':	6,	'umich.edu':	7,

'gmail.com':	1,	'caret.cam.ac.uk':	1,	'iupui.edu':	8}

Tuples
Tuples	are	immutable

A	tuple1	is	a	sequence	of	values	much	like	a	list.	The	values	stored	in	a	tuple	can
be	any	 type,	and	 they	are	 indexed	by	 integers.	The	 important	difference	 is	 that
tuples	are	immutable.	Tuples	are	also	comparable	and	hashable	 so	we	can	sort
lists	of	them	and	use	tuples	as	key	values	in	Python	dictionaries.

Syntactically,	a	tuple	is	a	comma-separated	list	of	values:

>>>	t	=	'a',	'b',	'c',	'd',	'e'

Although	 it	 is	 not	 necessary,	 it	 is	 common	 to	 enclose	 tuples	 in	 parentheses	 to
help	us	quickly	identify	tuples	when	we	look	at	Python	code:

>>>	t	=	('a',	'b',	'c',	'd',	'e')

To	create	a	tuple	with	a	single	element,	you	have	to	include	the	final	comma:

>>>	t1	=	('a',)

>>>	type(t1)

<type	'tuple'>

Without	 the	 comma	 Python	 treats	 ('a')	 as	 an	 expression	 with	 a	 string	 in
parentheses	that	evaluates	to	a	string:

>>>	t2	=	('a')

>>>	type(t2)

<type	'str'>

Another	 way	 to	 construct	 a	 tuple	 is	 the	 built-in	 function	 tuple.	 With	 no

argument,	it	creates	an	empty	tuple:

>>>	t	=	tuple()

>>>	print(t)

()

If	the	argument	is	a	sequence	(string,	list,	or	tuple),	the	result	of	the	call	to	tuple
is	a	tuple	with	the	elements	of	the	sequence:

>>>	t	=	tuple('lupins')

>>>	print(t)

('l',	'u',	'p',	'i',	'n',	's')

Because	 tuple	 is	 the	 name	 of	 a	 constructor,	 you	 should	 avoid	 using	 it	 as	 a
variable	name.

Most	 list	 operators	 also	 work	 on	 tuples.	 The	 bracket	 operator	 indexes	 an
element:

>>>	t	=	('a',	'b',	'c',	'd',	'e')

>>>	print(t[0])

'a'

And	the	slice	operator	selects	a	range	of	elements.

>>>	print(t[1:3])

('b',	'c')

But	if	you	try	to	modify	one	of	the	elements	of	the	tuple,	you	get	an	error:

>>>	t[0]	=	'A'

TypeError:	object	doesn't	support	item	assignment

You	 can't	modify	 the	 elements	 of	 a	 tuple,	 but	 you	 can	 replace	 one	 tuple	with
another:

>>>	t	=	('A',)	+	t[1:]

>>>	print(t)

('A',	'b',	'c',	'd',	'e')

Comparing	tuples

The	comparison	operators	work	with	 tuples	and	other	 sequences.	Python	starts
by	comparing	the	first	element	from	each	sequence.	If	they	are	equal,	it	goes	on
to	 the	 next	 element,	 and	 so	 on,	 until	 it	 finds	 elements	 that	 differ.	 Subsequent
elements	are	not	considered	(even	if	they	are	really	big).

>>>	(0,	1,	2)	<	(0,	3,	4)

True

>>>	(0,	1,	2000000)	<	(0,	3,	4)

True

The	sort	function	works	the	same	way.	It	sorts	primarily	by	first	element,	but	in
the	case	of	a	tie,	it	sorts	by	second	element,	and	so	on.

This	feature	lends	itself	to	a	pattern	called	DSU	for

Decorate
a	sequence	by	building	a	list	of	tuples	with	one	or	more	sort	keys	preceding
the	elements	from	the	sequence,

Sort
the	list	of	tuples	using	the	Python	built-in	sort,	and

Undecorate
by	extracting	the	sorted	elements	of	the	sequence.

For	example,	suppose	you	have	a	list	of	words	and	you	want	to	sort	them	from
longest	to	shortest:

txt	=	'but	soft	what	light	in	yonder	window	breaks'

words	=	txt.split()

t	=	list()

for	word	in	words:

				t.append((len(word),	word))

t.sort(reverse=True)

res	=	list()

for	length,	word	in	t:

				res.append(word)

print(res)

#	Code:	http://www.py4e.com/code3/soft.py

The	first	loop	builds	a	list	of	tuples,	where	each	tuple	is	a	word	preceded	by	its
length.

sort	 compares	 the	 first	 element,	 length,	 first,	 and	 only	 considers	 the	 second
element	to	break	ties.	The	keyword	argument	reverse=True	tells	sort	 to	go	in
decreasing	order.

The	 second	 loop	 traverses	 the	 list	 of	 tuples	 and	 builds	 a	 list	 of	 words	 in
descending	 order	 of	 length.	 The	 four-character	 words	 are	 sorted	 in	 reverse
alphabetical	order,	so	"what"	appears	before	"soft"	in	the	following	list.

The	output	of	the	program	is	as	follows:

['yonder',	'window',	'breaks',	'light',	'what',

'soft',	'but',	'in']

Of	course	the	line	loses	much	of	its	poetic	impact	when	turned	into	a	Python	list
and	sorted	in	descending	word	length	order.

Tuple	assignment

One	of	the	unique	syntactic	features	of	the	Python	language	is	the	ability	to	have
a	 tuple	 on	 the	 left	 side	 and	 a	 sequence	 on	 the	 right	 side	 of	 an	 assignment
statement.	 This	 allows	 you	 to	 assign	more	 than	 one	 variable	 at	 a	 time	 to	 the
given	sequence.

In	this	example	we	have	a	two-element	list	(which	is	a	sequence)	and	assign	the
first	 and	 second	 elements	 of	 the	 sequence	 to	 the	 variables	x	 and	y	 in	 a	 single
statement.

>>>	m	=	['have',	'fun']

>>>	x,	y	=	m

>>>	x

'have'

>>>	y

'fun'

>>>

It	is	not	magic,	Python	roughly	 translates	the	tuple	assignment	syntax	to	be	the
following:2

>>>	m	=	['have',	'fun']

>>>	x	=	m[0]

>>>	y	=	m[1]

>>>	x

'have'

>>>	y

'fun'

>>>

Stylistically	when	we	use	a	tuple	on	the	left	side	of	the	assignment	statement,	we
omit	the	parentheses,	but	the	following	is	an	equally	valid	syntax:

>>>	m	=	['have',	'fun']

>>>	(x,	y)	=	m

>>>	x

'have'

>>>	y

'fun'

>>>

A	 particularly	 clever	 application	 of	 tuple	 assignment	 allows	 us	 to	 swap	 the
values	of	two	variables	in	a	single	statement:

>>>	a,	b	=	b,	a

Both	sides	of	this	statement	are	tuples,	but	the	left	side	is	a	tuple	of	variables;	the
right	side	is	a	tuple	of	expressions.	Each	value	on	the	right	side	is	assigned	to	its

respective	 variable	 on	 the	 left	 side.	 All	 the	 expressions	 on	 the	 right	 side	 are
evaluated	before	any	of	the	assignments.

The	number	of	variables	on	the	left	and	the	number	of	values	on	the	right	must
be	the	same:

>>>	a,	b	=	1,	2,	3

ValueError:	too	many	values	to	unpack

More	generally,	the	right	side	can	be	any	kind	of	sequence	(string,	list,	or	tuple).
For	example,	to	split	an	email	address	into	a	user	name	and	a	domain,	you	could
write:

>>>	addr	=	'monty@python.org'

>>>	uname,	domain	=	addr.split('@')

The	 return	 value	 from	 split	 is	 a	 list	 with	 two	 elements;	 the	 first	 element	 is
assigned	to	uname,	the	second	to	domain.

>>>	print(uname)

monty

>>>	print(domain)

python.org

Dictionaries	and	tuples

Dictionaries	have	a	method	called	items	that	returns	a	list	of	tuples,	where	each
tuple	is	a	key-value	pair:

>>>	d	=	{'b':1,	'a':10,	'c':22}

>>>	t	=	list(d.items())

>>>	print(t)

[('b',	1),	('a',	10),	('c',	22)]

As	you	should	expect	from	a	dictionary,	the	items	are	in	non-alphabetical	order.

However,	since	the	list	of	tuples	is	a	list,	and	tuples	are	comparable,	we	can	now
sort	the	list	of	tuples.	Converting	a	dictionary	to	a	list	of	tuples	is	a	way	for	us	to
output	the	contents	of	a	dictionary	sorted	by	key:

>>>	d	=	{'b':1,	'a':10,	'c':22}

>>>	t	=	list(d.items())

>>>	t

[('b',	1),	('a',	10),	('c',	22)]

>>>	t.sort()

>>>	t

[('a',	10),	('b',	1),	('c',	22)]

The	new	list	is	sorted	in	ascending	alphabetical	order	by	the	key	value.

Multiple	assignment	with	dictionaries

Combining	items,	tuple	assignment,	and	for,	you	can	see	a	nice	code	pattern	for
traversing	the	keys	and	values	of	a	dictionary	in	a	single	loop:

d	=	{'a':10,	'b':1,	'c':22}

for	key,	val	in	list(d.items()):

				print(val,	key)

This	loop	has	two	iteration	variables	because	items	returns	a	list	of	tuples	and
key,	 val	 is	 a	 tuple	 assignment	 that	 successively	 iterates	 through	 each	 of	 the
key-value	pairs	in	the	dictionary.

For	each	iteration	through	the	loop,	both	key	and	value	are	advanced	to	the	next
key-value	pair	in	the	dictionary	(still	in	hash	order).

The	output	of	this	loop	is:

10	a

22	c

1	b

Again,	it	is	in	hash	key	order	(i.e.,	no	particular	order).

If	we	combine	these	two	techniques,	we	can	print	out	the	contents	of	a	dictionary

sorted	by	the	value	stored	in	each	key-value	pair.

To	do	this,	we	first	make	a	list	of	tuples	where	each	tuple	is	(value,	key).	The
items	 method	would	 give	 us	 a	 list	 of	 (key,	 value)	 tuples,	 but	 this	 time	we
want	to	sort	by	value,	not	key.	Once	we	have	constructed	the	list	with	the	value-
key	tuples,	it	is	a	simple	matter	to	sort	the	list	in	reverse	order	and	print	out	the
new,	sorted	list.

>>>	d	=	{'a':10,	'b':1,	'c':22}

>>>	l	=	list()

>>>	for	key,	val	in	d.items()	:

...					l.append((val,	key))

...

>>>	l

[(10,	'a'),	(1,	'b'),	(22,	'c')]

>>>	l.sort(reverse=True)

>>>	l

[(22,	'c'),	(10,	'a'),	(1,	'b')]

>>>

By	carefully	constructing	the	list	of	tuples	to	have	the	value	as	the	first	element
of	each	tuple,	we	can	sort	the	list	of	tuples	and	get	our	dictionary	contents	sorted
by	value.

The	most	common	words

Coming	back	to	our	running	example	of	the	text	from	Romeo	and	Juliet	Act	2,
Scene	2,	we	can	augment	our	program	to	use	this	technique	to	print	the	ten	most
common	words	in	the	text	as	follows:

import	string

fhand	=	open('romeo-full.txt')

counts	=	dict()

for	line	in	fhand:

				line	=	line.translate(str.maketrans('',	'',	string.punctuation))

				line	=	line.lower()

				words	=	line.split()

				for	word	in	words:

								if	word	not	in	counts:

												counts[word]	=	1

								else:

												counts[word]	+=	1

#	Sort	the	dictionary	by	value

lst	=	list()

for	key,	val	in	list(counts.items()):

				lst.append((val,	key))

lst.sort(reverse=True)

for	key,	val	in	lst[:10]:

				print(key,	val)

#	Code:	http://www.py4e.com/code3/count3.py

The	 first	part	of	 the	program	which	 reads	 the	 file	and	computes	 the	dictionary
that	maps	each	word	 to	 the	count	of	words	 in	 the	document	 is	unchanged.	But
instead	of	simply	printing	out	counts	and	ending	the	program,	we	construct	a	list
of	(val,	key)	tuples	and	then	sort	the	list	in	reverse	order.

Since	the	value	is	first,	it	will	be	used	for	the	comparisons.	If	there	is	more	than
one	 tuple	with	 the	same	value,	 it	will	 look	at	 the	second	element	 (the	key),	 so
tuples	where	the	value	is	the	same	will	be	further	sorted	by	the	alphabetical	order
of	the	key.

At	the	end	we	write	a	nice	for	loop	which	does	a	multiple	assignment	iteration
and	prints	out	the	ten	most	common	words	by	iterating	through	a	slice	of	the	list
(lst[:10]).

So	 now	 the	 output	 finally	 looks	 like	 what	 we	 want	 for	 our	 word	 frequency
analysis.

61	i

42	and

40	romeo

34	to

34	the

32	thou

32	juliet

30	that

29	my

24	thee

The	fact	that	this	complex	data	parsing	and	analysis	can	be	done	with	an	easy-to-
understand	19-line	Python	program	is	one	reason	why	Python	is	a	good	choice
as	a	language	for	exploring	information.

Using	tuples	as	keys	in	dictionaries

Because	tuples	are	hashable	and	lists	are	not,	 if	we	want	 to	create	a	composite
key	to	use	in	a	dictionary	we	must	use	a	tuple	as	the	key.

We	 would	 encounter	 a	 composite	 key	 if	 we	 wanted	 to	 create	 a	 telephone
directory	 that	 maps	 from	 last-name,	 first-name	 pairs	 to	 telephone	 numbers.
Assuming	that	we	have	defined	the	variables	last,	first,	and	number,	we	could
write	a	dictionary	assignment	statement	as	follows:

directory[last,first]	=	number

The	expression	 in	brackets	 is	 a	 tuple.	We	could	use	 tuple	 assignment	 in	 a	for
loop	to	traverse	this	dictionary.

for	last,	first	in	directory:

				print(first,	last,	directory[last,first])

This	 loop	 traverses	 the	 keys	 in	 directory,	 which	 are	 tuples.	 It	 assigns	 the
elements	 of	 each	 tuple	 to	 last	 and	 first,	 then	 prints	 the	 name	 and
corresponding	telephone	number.

Sequences:	strings,	lists,	and	tuples	-	Oh	My!

I	have	focused	on	lists	of	 tuples,	but	almost	all	of	 the	examples	 in	 this	chapter
also	 work	 with	 lists	 of	 lists,	 tuples	 of	 tuples,	 and	 tuples	 of	 lists.	 To	 avoid
enumerating	 the	 possible	 combinations,	 it	 is	 sometimes	 easier	 to	 talk	 about
sequences	of	sequences.

In	many	contexts,	the	different	kinds	of	sequences	(strings,	lists,	and	tuples)	can
be	used	interchangeably.	So	how	and	why	do	you	choose	one	over	the	others?

To	start	with	the	obvious,	strings	are	more	limited	than	other	sequences	because
the	 elements	 have	 to	 be	 characters.	 They	 are	 also	 immutable.	 If	 you	 need	 the
ability	to	change	the	characters	in	a	string	(as	opposed	to	creating	a	new	string),
you	might	want	to	use	a	list	of	characters	instead.

Lists	are	more	common	than	tuples,	mostly	because	they	are	mutable.	But	there
are	a	few	cases	where	you	might	prefer	tuples:

1.	 In	 some	 contexts,	 like	 a	 return	 statement,	 it	 is	 syntactically	 simpler	 to
create	a	tuple	than	a	list.	In	other	contexts,	you	might	prefer	a	list.

2.	 If	 you	 want	 to	 use	 a	 sequence	 as	 a	 dictionary	 key,	 you	 have	 to	 use	 an
immutable	type	like	a	tuple	or	string.

3.	 If	 you	 are	 passing	 a	 sequence	 as	 an	 argument	 to	 a	 function,	 using	 tuples
reduces	the	potential	for	unexpected	behavior	due	to	aliasing.

Because	 tuples	 are	 immutable,	 they	 don't	 provide	 methods	 like	 sort	 and
reverse,	 which	 modify	 existing	 lists.	 However	 Python	 provides	 the	 built-in
functions	 sorted	 and	 reversed,	 which	 take	 any	 sequence	 as	 a	 parameter	 and
return	a	new	sequence	with	the	same	elements	in	a	different	order.

List	comprehension

Sometimes	you	want	to	create	a	sequence	by	using	data	from	another	sequence.
You	can	achieve	this	by	writing	a	for	loop	and	appending	one	item	at	a	time.	For
example,	if	you	wanted	to	convert	a	list	of	strings	--	each	string	storing	digits	--
into	numbers	that	you	can	sum	up,	you	would	write:

list_of_ints_in_strings	=	['42',	'65',	'12']

list_of_ints	=	[]

for	x	in	list_of_ints_in_strings:

				list_of_ints.append(int(x))

print(sum(list_of_ints))

With	 list	 comprehension,	 the	 above	 code	 can	 be	 written	 in	 a	 more	 compact
manner:

list_of_ints_in_strings	=	['42',	'65',	'12']

list_of_ints	=	[int(x)	for	x	in	list_of_ints_in_strings]

print(sum(list_of_ints))

Debugging

Lists,	 dictionaries	 and	 tuples	 are	 known	 generically	 as	data	 structures;	 in	 this
chapter	we	are	starting	to	see	compound	data	structures,	like	lists	of	tuples,	and
dictionaries	 that	 contain	 tuples	 as	 keys	 and	 lists	 as	 values.	 Compound	 data
structures	are	useful,	but	they	are	prone	to	what	I	call	shape	errors;	that	is,	errors
caused	 when	 a	 data	 structure	 has	 the	 wrong	 type,	 size,	 or	 composition,	 or
perhaps	you	write	some	code	and	forget	the	shape	of	your	data	and	introduce	an
error.	For	example,	if	you	are	expecting	a	list	with	one	integer	and	I	give	you	a
plain	old	integer	(not	in	a	list),	it	won't	work.

Glossary

comparable
A	type	where	one	value	can	be	checked	to	see	if	it	is	greater	than,	less	than,
or	equal	to	another	value	of	the	same	type.	Types	which	are	comparable	can
be	put	in	a	list	and	sorted.

data	structure
A	collection	of	related	values,	often	organized	in	lists,	dictionaries,	 tuples,
etc.

DSU
Abbreviation	of	"decorate-sort-undecorate",	a	pattern	that	involves	building
a	list	of	tuples,	sorting,	and	extracting	part	of	the	result.

gather
The	operation	of	assembling	a	variable-length	argument	tuple.

hashable
A	type	 that	has	a	hash	function.	 Immutable	 types	 like	 integers,	 floats,	and
strings	are	hashable;	mutable	types	like	lists	and	dictionaries	are	not.

scatter
The	operation	of	treating	a	sequence	as	a	list	of	arguments.

shape	(of	a	data	structure)
A	summary	of	the	type,	size,	and	composition	of	a	data	structure.

singleton

A	list	(or	other	sequence)	with	a	single	element.
tuple

An	immutable	sequence	of	elements.
tuple	assignment

An	assignment	with	a	sequence	on	the	right	side	and	a	tuple	of	variables	on
the	left.	The	right	side	is	evaluated	and	then	its	elements	are	assigned	to	the
variables	on	the	left.

Exercises

Exercise	 1:	 Revise	 a	 previous	 program	 as	 follows:	 Read	 and	 parse	 the
"From	"	lines	and	pull	out	the	addresses	from	the	line.	Count	the	number	of
messages	from	each	person	using	a	dictionary.

After	all	the	data	has	been	read,	print	the	person	with	the	most	commits	by
creating	a	list	of	(count,	email)	tuples	from	the	dictionary.	Then	sort	the	list
in	reverse	order	and	print	out	the	person	who	has	the	most	commits.

Sample	Line:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

Enter	a	file	name:	mbox-short.txt

cwen@iupui.edu	5

Enter	a	file	name:	mbox.txt

zqian@umich.edu	195

Exercise	2:	This	program	counts	the	distribution	of	the	hour	of	the	day	for
each	 of	 the	 messages.	 You	 can	 pull	 the	 hour	 from	 the	 "From	 "	 line	 by
finding	 the	 time	 string	 and	 then	 splitting	 that	 string	 into	 parts	 using	 the
colon	character.	Once	you	have	accumulated	the	counts	for	each	hour,	print
out	the	counts,	one	per	line,	sorted	by	hour	as	shown	below.

python	timeofday.py

Enter	a	file	name:	mbox-short.txt

04	3

06	1

07	1

09	2

10	3

11	6

14	1

15	2

16	4

17	2

18	1

19	1

Exercise	 3:	 Write	 a	 program	 that	 reads	 a	 file	 and	 prints	 the	 letters	 in
decreasing	order	of	frequency.	Your	program	should	convert	all	the	input	to
lower	 case	and	only	 count	 the	 letters	 a-z.	Your	program	should	not	 count
spaces,	digits,	punctuation,	or	anything	other	than	the	letters	a-z.	Find	text
samples	 from	 several	 different	 languages	 and	 see	 how	 letter	 frequency
varies	 between	 languages.	 Compare	 your	 results	 with	 the	 tables	 at
https://wikipedia.org/wiki/Letter_frequencies.

1.	 Fun	 fact:	The	word	 "tuple"	 comes	 from	 the	 names	 given	 to	 sequences	 of
numbers	 of	 varying	 lengths:	 single,	 double,	 triple,	 quadruple,	 quintuple,
sextuple,	septuple,	etc.↩

2.	 Python	does	not	 translate	 the	 syntax	 literally.	For	example,	 if	you	 try	 this
with	a	dictionary,	it	will	not	work	as	you	might	expect.↩

https://wikipedia.org/wiki/Letter_frequencies

Regular	expressions
So	 far	we	have	been	 reading	 through	 files,	 looking	 for	patterns	 and	 extracting
various	bits	of	lines	that	we	find	interesting.	We	have	been	using	string	methods
like	split	and	find	and	using	 lists	and	string	slicing	 to	extract	portions	of	 the
lines.

This	 task	 of	 searching	 and	 extracting	 is	 so	 common	 that	 Python	 has	 a	 very
powerful	 module	 called	 regular	 expressions	 that	 handles	 many	 of	 these	 tasks
quite	elegantly.	The	reason	we	have	not	introduced	regular	expressions	earlier	in
the	book	 is	because	while	 they	are	very	powerful,	 they	are	a	 little	complicated
and	their	syntax	takes	some	getting	used	to.

Regular	 expressions	 are	 almost	 their	 own	 little	 programming	 language	 for
searching	and	parsing	strings.	As	a	matter	of	fact,	entire	books	have	been	written
on	the	topic	of	regular	expressions.	In	this	chapter,	we	will	only	cover	the	basics
of	regular	expressions.	For	more	detail	on	regular	expressions,	see:

https://en.wikipedia.org/wiki/Regular_expression

https://docs.python.org/library/re.html

The	 regular	expression	module	re	must	 be	 imported	 into	your	program	before
you	 can	 use	 it.	 The	 simplest	 use	 of	 the	 regular	 expression	 module	 is	 the
search()	 function.	 The	 following	 program	 demonstrates	 a	 trivial	 use	 of	 the
search	function.

#	Search	for	lines	that	contain	'From'

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				if	re.search('From:',	line):

								print(line)

#	Code:	http://www.py4e.com/code3/re01.py

https://en.wikipedia.org/wiki/Regular_expression
https://docs.python.org/library/re.html

We	 open	 the	 file,	 loop	 through	 each	 line,	 and	 use	 the	 regular	 expression
search()	 to	only	print	out	 lines	 that	 contain	 the	 string	 "From:".	This	program
does	not	use	the	real	power	of	regular	expressions,	since	we	could	have	just	as
easily	used	line.find()	to	accomplish	the	same	result.

The	power	of	the	regular	expressions	comes	when	we	add	special	characters	to
the	search	string	 that	allow	us	 to	more	precisely	control	which	 lines	match	 the
string.	Adding	these	special	characters	to	our	regular	expression	allow	us	to	do
sophisticated	matching	and	extraction	while	writing	very	little	code.

For	 example,	 the	 caret	 character	 is	 used	 in	 regular	 expressions	 to	 match	 "the
beginning"	of	a	 line.	We	could	change	our	program	 to	only	match	 lines	where
"From:"	was	at	the	beginning	of	the	line	as	follows:

#	Search	for	lines	that	start	with	'From'

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				if	re.search('^From:',	line):

								print(line)

#	Code:	http://www.py4e.com/code3/re02.py

Now	we	will	only	match	 lines	 that	start	with	 the	string	"From:".	This	 is	still	a
very	 simple	 example	 that	 we	 could	 have	 done	 equivalently	 with	 the
startswith()	 method	 from	 the	 string	 module.	 But	 it	 serves	 to	 introduce	 the
notion	 that	 regular	 expressions	 contain	 special	 action	 characters	 that	 give	 us
more	control	as	to	what	will	match	the	regular	expression.

Character	matching	in	regular	expressions

There	 are	 a	 number	 of	 other	 special	 characters	 that	 let	 us	 build	 even	 more
powerful	regular	expressions.	The	most	commonly	used	special	character	is	the
period	or	full	stop,	which	matches	any	character.

In	the	following	example,	the	regular	expression	F..m:	would	match	any	of	the
strings	 "From:",	 "Fxxm:",	 "F12m:",	 or	 "F!@m:"	 since	 the	 period	 characters	 in
the	regular	expression	match	any	character.

#	Search	for	lines	that	start	with	'F',	followed	by

#	2	characters,	followed	by	'm:'

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				if	re.search('^F..m:',	line):

								print(line)

#	Code:	http://www.py4e.com/code3/re03.py

This	 is	particularly	powerful	when	combined	with	 the	ability	 to	 indicate	 that	a
character	can	be	repeated	any	number	of	times	using	the	*	or	+	characters	in	your
regular	 expression.	 These	 special	 characters	 mean	 that	 instead	 of	 matching	 a
single	character	in	the	search	string,	they	match	zero-or-more	characters	(in	the
case	 of	 the	 asterisk)	 or	 one-or-more	 of	 the	 characters	 (in	 the	 case	 of	 the	 plus
sign).

We	can	further	narrow	down	the	lines	that	we	match	using	a	repeated	wild	card
character	in	the	following	example:

#	Search	for	lines	that	start	with	From	and	have	an	at	sign

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				if	re.search('^From:.+@',	line):

								print(line)

#	Code:	http://www.py4e.com/code3/re04.py

The	 search	 string	 ^From:.+@	 will	 successfully	 match	 lines	 that	 start	 with
"From:",	 followed	 by	 one	 or	more	 characters	 (.+),	 followed	 by	 an	 at-sign.	 So
this	will	match	the	following	line:

From:	stephen.marquard@uct.ac.za

You	 can	 think	 of	 the	 .+	 wildcard	 as	 expanding	 to	 match	 all	 the	 characters
between	the	colon	character	and	the	at-sign.

From:.+@

It	 is	good	to	 think	of	 the	plus	and	asterisk	characters	as	"pushy".	For	example,
the	following	string	would	match	the	last	at-sign	in	 the	string	as	 the	.+	pushes
outwards,	as	shown	below:

From:	stephen.marquard@uct.ac.za,	csev@umich.edu,	and	cwen	@iupui.edu

It	 is	 possible	 to	 tell	 an	 asterisk	 or	 plus	 sign	 not	 to	 be	 so	 "greedy"	 by	 adding
another	character.	See	the	detailed	documentation	for	information	on	turning	off
the	greedy	behavior.

Extracting	data	using	regular	expressions

If	we	want	 to	 extract	 data	 from	 a	 string	 in	 Python	we	 can	 use	 the	findall()
method	 to	extract	all	of	 the	substrings	which	match	a	 regular	expression.	Let's
use	the	example	of	wanting	to	extract	anything	that	looks	like	an	email	address
from	 any	 line	 regardless	 of	 format.	 For	 example,	 we	 want	 to	 pull	 the	 email
addresses	from	each	of	the	following	lines:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

Return-Path:	<postmaster@collab.sakaiproject.org>

										for	<source@collab.sakaiproject.org>;

Received:	(from	apache@localhost)

Author:	stephen.marquard@uct.ac.za

We	don't	want	to	write	code	for	each	of	the	types	of	lines,	splitting	and	slicing
differently	 for	 each	 line.	 This	 following	 program	 uses	 findall()	 to	 find	 the
lines	with	email	addresses	in	them	and	extract	one	or	more	addresses	from	each
of	those	lines.

import	re

s	=	'A	message	from	csev@umich.edu	to	cwen@iupui.edu	about	meeting	@2PM'

lst	=	re.findall('\S+@\S+',	s)

print(lst)

#	Code:	http://www.py4e.com/code3/re05.py

The	findall()	method	searches	the	string	in	the	second	argument	and	returns	a

list	 of	 all	 of	 the	 strings	 that	 look	 like	 email	 addresses.	 We	 are	 using	 a	 two-
character	sequence	that	matches	a	non-whitespace	character	(\S).

The	output	of	the	program	would	be:

['csev@umich.edu',	'cwen@iupui.edu']

Translating	 the	 regular	 expression,	 we	 are	 looking	 for	 substrings	 that	 have	 at
least	one	non-whitespace	character,	followed	by	an	at-sign,	followed	by	at	least
one	more	non-whitespace	character.	The	\S+	matches	as	many	non-whitespace
characters	as	possible.

The	 regular	 expression	 would	 match	 twice	 (csev@umich.edu	 and
cwen@iupui.edu),	but	it	would	not	match	the	string	"@2PM"	because	there	are
no	non-blank	characters	before	the	at-sign.	We	can	use	this	regular	expression	in
a	program	to	read	all	the	lines	in	a	file	and	print	out	anything	that	looks	like	an
email	address	as	follows:

#	Search	for	lines	that	have	an	at	sign	between	characters

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				x	=	re.findall('\S+@\S+',	line)

				if	len(x)	>	0:

								print(x)

#	Code:	http://www.py4e.com/code3/re06.py

We	 read	 each	 line	 and	 then	 extract	 all	 the	 substrings	 that	 match	 our	 regular
expression.	 Since	 findall()	 returns	 a	 list,	 we	 simply	 check	 if	 the	 number	 of
elements	in	our	returned	list	is	more	than	zero	to	print	only	lines	where	we	found
at	least	one	substring	that	looks	like	an	email	address.

If	we	run	the	program	on	mbox-short.txt	we	get	the	following	output:

...

['<source@collab.sakaiproject.org>;']

['<source@collab.sakaiproject.org>;']

['apache@localhost)']

['source@collab.sakaiproject.org;']

['cwen@iupui.edu']

['source@collab.sakaiproject.org']

['cwen@iupui.edu']

['cwen@iupui.edu']

['wagnermr@iupui.edu']

Some	 of	 our	 email	 addresses	 have	 incorrect	 characters	 like	 "<"	 or	 ";"	 at	 the
beginning	or	end.	Let's	declare	that	we	are	only	interested	in	the	portion	of	the
string	that	starts	and	ends	with	a	letter	or	a	number.

To	do	 this,	we	use	 another	 feature	 of	 regular	 expressions.	 Square	 brackets	 are
used	to	indicate	a	set	of	multiple	acceptable	characters	we	are	willing	to	consider
matching.	 In	 a	 sense,	 the	 \S	 is	 asking	 to	 match	 the	 set	 of	 "non-whitespace
characters".	Now	we	will	be	a	little	more	explicit	in	terms	of	the	characters	we
will	match.

Here	is	our	new	regular	expression:

[a-zA-Z0-9]\S*@\S*[a-zA-Z]

This	 is	 getting	 a	 little	 complicated	 and	 you	 can	 begin	 to	 see	 why	 regular
expressions	 are	 their	 own	 little	 language	 unto	 themselves.	 Translating	 this
regular	 expression,	 we	 are	 looking	 for	 substrings	 that	 start	 with	 a	 single
lowercase	letter,	uppercase	letter,	or	number	"[a-zA-Z0-9]",	followed	by	zero	or
more	 non-blank	 characters	 (\S*),	 followed	 by	 an	 at-sign,	 followed	 by	 zero	 or
more	non-blank	characters	(\S*),	 followed	by	an	uppercase	or	 lowercase	 letter.
Note	that	we	switched	from	+	to	*	to	indicate	zero	or	more	non-blank	characters
since	[a-zA-Z0-9]	is	already	one	non-blank	character.	Remember	that	the	*	or	+
applies	to	the	single	character	immediately	to	the	left	of	the	plus	or	asterisk.

If	we	use	this	expression	in	our	program,	our	data	is	much	cleaner:

#	Search	for	lines	that	have	an	at	sign	between	characters

#	The	characters	must	be	a	letter	or	number

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				x	=	re.findall('[a-zA-Z0-9]\S*@\S*[a-zA-Z]',	line)

				if	len(x)	>	0:

								print(x)

#	Code:	http://www.py4e.com/code3/re07.py

...

['wagnermr@iupui.edu']

['cwen@iupui.edu']

['postmaster@collab.sakaiproject.org']

['200801032122.m03LMFo4005148@nakamura.uits.iupui.edu']

['source@collab.sakaiproject.org']

['source@collab.sakaiproject.org']

['source@collab.sakaiproject.org']

['apache@localhost']

Notice	 that	 on	 the	 source@collab.sakaiproject.org	 lines,	 our	 regular
expression	eliminated	two	letters	at	the	end	of	the	string	(">;").	This	is	because
when	 we	 append	 [a-zA-Z]	 to	 the	 end	 of	 our	 regular	 expression,	 we	 are
demanding	 that	 whatever	 string	 the	 regular	 expression	 parser	 finds	 must	 end
with	a	letter.	So	when	it	sees	the	">"	at	the	end	of	"sakaiproject.org>;"	it	simply
stops	at	the	last	"matching"	letter	it	found	(i.e.,	the	"g"	was	the	last	good	match).

Also	note	that	the	output	of	the	program	is	a	Python	list	that	has	a	string	as	the
single	element	in	the	list.

Combining	searching	and	extracting

If	we	want	to	find	numbers	on	lines	that	start	with	the	string	"X-"	such	as:

X-DSPAM-Confidence:	0.8475

X-DSPAM-Probability:	0.0000

we	don't	just	want	any	floating-point	numbers	from	any	lines.	We	only	want	to
extract	numbers	from	lines	that	have	the	above	syntax.

We	can	construct	the	following	regular	expression	to	select	the	lines:

^X-.*:	[0-9.]+

Translating	this,	we	are	saying,	we	want	lines	that	start	with	X-,	followed	by	zero
or	 more	 characters	 (.*),	 followed	 by	 a	 colon	 (:)	 and	 then	 a	 space.	 After	 the
space	we	are	looking	for	one	or	more	characters	that	are	either	a	digit	(0-9)	or	a
period	 [0-9.]+.	 Note	 that	 inside	 the	 square	 brackets,	 the	 period	 matches	 an
actual	period	(i.e.,	it	is	not	a	wildcard	between	the	square	brackets).

This	is	a	very	tight	expression	that	will	pretty	much	match	only	the	lines	we	are
interested	in	as	follows:

#	Search	for	lines	that	start	with	'X'	followed	by	any	non

#	whitespace	characters	and	':'

#	followed	by	a	space	and	any	number.

#	The	number	can	include	a	decimal.

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				if	re.search('^X\S*:	[0-9.]+',	line):

								print(line)

#	Code:	http://www.py4e.com/code3/re10.py

When	we	run	the	program,	we	see	the	data	nicely	filtered	to	show	only	the	lines
we	are	looking	for.

X-DSPAM-Confidence:	0.8475

X-DSPAM-Probability:	0.0000

X-DSPAM-Confidence:	0.6178

X-DSPAM-Probability:	0.0000

...

But	now	we	have	to	solve	the	problem	of	extracting	the	numbers.	While	it	would
be	 simple	 enough	 to	 use	 split,	 we	 can	 use	 another	 feature	 of	 regular
expressions	to	both	search	and	parse	the	line	at	the	same	time.

Parentheses	are	another	special	character	in	regular	expressions.	When	you	add
parentheses	to	a	regular	expression,	they	are	ignored	when	matching	the	string.
But	when	you	are	using	findall(),	parentheses	indicate	that	while	you	want	the
whole	expression	to	match,	you	only	are	interested	in	extracting	a	portion	of	the
substring	that	matches	the	regular	expression.

So	we	make	the	following	change	to	our	program:

#	Search	for	lines	that	start	with	'X'	followed	by	any

#	non	whitespace	characters	and	':'	followed	by	a	space

#	and	any	number.	The	number	can	include	a	decimal.

#	Then	print	the	number	if	it	is	greater	than	zero.

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				x	=	re.findall('^X\S*:	([0-9.]+)',	line)

				if	len(x)	>	0:

								print(x)

#	Code:	http://www.py4e.com/code3/re11.py

Instead	of	calling	search(),	we	add	parentheses	around	 the	part	of	 the	 regular
expression	 that	 represents	 the	 floating-point	 number	 to	 indicate	we	 only	want
findall()	 to	 give	 us	 back	 the	 floating-point	 number	 portion	 of	 the	matching
string.

The	output	from	this	program	is	as	follows:

['0.8475']

['0.0000']

['0.6178']

['0.0000']

['0.6961']

['0.0000']

...

The	numbers	are	still	in	a	list	and	need	to	be	converted	from	strings	to	floating
point,	 but	 we	 have	 used	 the	 power	 of	 regular	 expressions	 to	 both	 search	 and
extract	the	information	we	found	interesting.

As	another	example	of	this	technique,	if	you	look	at	the	file	there	are	a	number
of	lines	of	the	form:

Details:	http://source.sakaiproject.org/viewsvn/?view=rev&rev=39772

If	we	wanted	to	extract	all	of	the	revision	numbers	(the	integer	number	at	the	end
of	these	lines)	using	the	same	technique	as	above,	we	could	write	the	following
program:

#	Search	for	lines	that	start	with	'Details:	rev='

#	followed	by	numbers

#	Then	print	the	number	if	one	is	found

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				x	=	re.findall('^Details:.*rev=([0-9]+)',	line)

				if	len(x)	>	0:

								print(x)

#	Code:	http://www.py4e.com/code3/re12.py

Translating	 our	 regular	 expression,	 we	 are	 looking	 for	 lines	 that	 start	 with
Details:,	 followed	 by	 any	 number	 of	 characters	 (.*),	 followed	 by	 rev=,	 and
then	 by	 one	 or	 more	 digits.	 We	 want	 to	 find	 lines	 that	 match	 the	 entire
expression	but	we	only	want	to	extract	the	integer	number	at	the	end	of	the	line,
so	we	surround	[0-9]+	with	parentheses.

When	we	run	the	program,	we	get	the	following	output:

['39772']

['39771']

['39770']

['39769']

...

Remember	 that	 the	[0-9]+	 is	"greedy"	and	 it	 tries	 to	make	as	 large	a	string	of
digits	as	possible	before	extracting	 those	digits.	This	"greedy"	behavior	 is	why
we	get	all	five	digits	for	each	number.	The	regular	expression	module	expands	in
both	directions	until	 it	encounters	a	non-digit,	or	 the	beginning	or	 the	end	of	a
line.

Now	we	can	use	regular	expressions	to	redo	an	exercise	from	earlier	in	the	book
where	we	were	 interested	 in	 the	 time	of	day	of	each	mail	message.	We	looked
for	lines	of	the	form:

From	stephen.marquard@uct.ac.za	Sat	Jan		5	09:14:16	2008

and	wanted	 to	extract	 the	hour	of	 the	day	for	each	 line.	Previously	we	did	 this
with	two	calls	to	split.	First	the	line	was	split	into	words	and	then	we	pulled	out
the	 fifth	 word	 and	 split	 it	 again	 on	 the	 colon	 character	 to	 pull	 out	 the	 two
characters	we	were	interested	in.

While	 this	worked,	 it	actually	results	 in	pretty	brittle	code	that	 is	assuming	the

lines	are	nicely	 formatted.	 If	you	were	 to	add	enough	error	 checking	 (or	 a	big
try/except	block)	to	insure	that	your	program	never	failed	when	presented	with
incorrectly	 formatted	 lines,	 the	code	would	balloon	 to	10-15	 lines	of	code	 that
was	pretty	hard	to	read.

We	can	do	this	in	a	far	simpler	way	with	the	following	regular	expression:

^From	.*	[0-9][0-9]:

The	 translation	 of	 this	 regular	 expression	 is	 that	we	 are	 looking	 for	 lines	 that
start	 with	 From	 (note	 the	 space),	 followed	 by	 any	 number	 of	 characters	 (.*),
followed	by	a	 space,	 followed	by	 two	digits	[0-9][0-9],	 followed	by	 a	 colon
character.	This	is	the	definition	of	the	kinds	of	lines	we	are	looking	for.

In	order	to	pull	out	only	the	hour	using	findall(),	we	add	parentheses	around
the	two	digits	as	follows:

^From	.*	([0-9][0-9]):

This	results	in	the	following	program:

#	Search	for	lines	that	start	with	From	and	a	character

#	followed	by	a	two	digit	number	between	00	and	99	followed	by	':'

#	Then	print	the	number	if	one	is	found

import	re

hand	=	open('mbox-short.txt')

for	line	in	hand:

				line	=	line.rstrip()

				x	=	re.findall('^From	.*	([0-9][0-9]):',	line)

				if	len(x)	>	0:	print(x)

#	Code:	http://www.py4e.com/code3/re13.py

When	the	program	runs,	it	produces	the	following	output:

['09']

['18']

['16']

['15']

...

Escape	character

Since	we	use	special	characters	in	regular	expressions	to	match	the	beginning	or
end	 of	 a	 line	 or	 specify	 wild	 cards,	 we	 need	 a	 way	 to	 indicate	 that	 these
characters	 are	 "normal"	 and	 we	 want	 to	match	 the	 actual	 character	 such	 as	 a
dollar	sign	or	caret.

We	 can	 indicate	 that	 we	 want	 to	 simply	 match	 a	 character	 by	 prefixing	 that
character	with	a	backslash.	For	example,	we	can	find	money	amounts	with	 the
following	regular	expression.

import	re

x	=	'We	just	received	$10.00	for	cookies.'

y	=	re.findall('\$[0-9.]+',x)

Since	we	prefix	 the	dollar	sign	with	a	backslash,	 it	actually	matches	 the	dollar
sign	in	the	input	string	instead	of	matching	the	"end	of	line",	and	the	rest	of	the
regular	 expression	 matches	 one	 or	 more	 digits	 or	 the	 period	 character.	Note:
Inside	square	brackets,	characters	are	not	"special".	So	when	we	say	[0-9.],	 it
really	means	digits	or	a	period.	Outside	of	square	brackets,	a	period	is	the	"wild-
card"	character	and	matches	any	character.	Inside	square	brackets,	the	period	is	a
period.

Summary

While	this	only	scratched	the	surface	of	regular	expressions,	we	have	learned	a
bit	 about	 the	 language	 of	 regular	 expressions.	 They	 are	 search	 strings	 with
special	 characters	 in	 them	 that	 communicate	 your	 wishes	 to	 the	 regular
expression	system	as	to	what	defines	"matching"	and	what	is	extracted	from	the
matched	 strings.	 Here	 are	 some	 of	 those	 special	 characters	 and	 character
sequences:

^	Matches	the	beginning	of	the	line.

$	Matches	the	end	of	the	line.

.	Matches	any	character	(a	wildcard).

\s	Matches	a	whitespace	character.

\S	Matches	a	non-whitespace	character	(opposite	of	\s).

*	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	zero
or	more	times.

*?	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	zero
or	more	times	in	"non-greedy	mode".

+	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	one
or	more	times.

+?	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	one
or	more	times	in	"non-greedy	mode".

?	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	zero
or	one	time.

??	Applies	to	the	immediately	preceding	character(s)	and	indicates	to	match	zero
or	one	time	in	"non-greedy	mode".

[aeiou]	Matches	a	single	character	as	long	as	that	character	is	in	the	specified
set.	 In	 this	 example,	 it	 would	 match	 "a",	 "e",	 "i",	 "o",	 or	 "u",	 but	 no	 other
characters.

[a-z0-9]	 You	 can	 specify	 ranges	 of	 characters	 using	 the	 minus	 sign.	 This
example	is	a	single	character	that	must	be	a	lowercase	letter	or	a	digit.

[^A-Za-z]	When	 the	 first	 character	 in	 the	 set	notation	 is	 a	 caret,	 it	 inverts	 the
logic.	 This	 example	matches	 a	 single	 character	 that	 is	 anything	 other	 than	 an
uppercase	or	lowercase	letter.

()	When	parentheses	are	added	to	a	regular	expression,	they	are	ignored	for	the
purpose	of	matching,	but	allow	you	to	extract	a	particular	subset	of	the	matched
string	rather	than	the	whole	string	when	using	findall().

\b	Matches	the	empty	string,	but	only	at	the	start	or	end	of	a	word.

\B	Matches	the	empty	string,	but	not	at	the	start	or	end	of	a	word.

\d	Matches	any	decimal	digit;	equivalent	to	the	set	[0-9].

\D	Matches	any	non-digit	character;	equivalent	to	the	set	[^0-9].

Bonus	section	for	Unix	/	Linux	users

Support	 for	 searching	 files	 using	 regular	 expressions	 was	 built	 into	 the	 Unix
operating	system	since	 the	1960s	and	 it	 is	available	 in	nearly	all	programming
languages	in	one	form	or	another.

As	a	matter	of	fact,	there	is	a	command-line	program	built	into	Unix	called	grep
(Generalized	Regular	Expression	Parser)	that	does	pretty	much	the	same	as	the
search()	examples	in	this	chapter.	So	if	you	have	a	Macintosh	or	Linux	system,
you	can	try	the	following	commands	in	your	command-line	window.

$	grep	'^From:'	mbox-short.txt

From:	stephen.marquard@uct.ac.za

From:	louis@media.berkeley.edu

From:	zqian@umich.edu

From:	rjlowe@iupui.edu

This	 tells	grep	 to	 show	you	 lines	 that	 start	with	 the	 string	 "From:"	 in	 the	 file
mbox-short.txt.	 If	 you	 experiment	 with	 the	 grep	 command	 a	 bit	 and	 read	 the
documentation	 for	 grep,	 you	 will	 find	 some	 subtle	 differences	 between	 the
regular	expression	support	in	Python	and	the	regular	expression	support	in	grep.
As	an	example,	grep	 does	 not	 support	 the	 non-blank	 character	\S	 so	 you	will
need	 to	use	 the	 slightly	more	complex	set	notation	[^],	which	 simply	means
match	a	character	that	is	anything	other	than	a	space.

Debugging

Python	 has	 some	 simple	 and	 rudimentary	 built-in	 documentation	 that	 can	 be
quite	 helpful	 if	 you	 need	 a	 quick	 refresher	 to	 trigger	 your	memory	 about	 the
exact	 name	 of	 a	 particular	method.	 This	 documentation	 can	 be	 viewed	 in	 the
Python	interpreter	in	interactive	mode.

You	can	bring	up	an	interactive	help	system	using	help().

>>>	help()

help>	modules

If	you	know	what	module	you	want	to	use,	you	can	use	the	dir()	command	to
find	the	methods	in	the	module	as	follows:

>>>	import	re

>>>	dir(re)

[..	'compile',	'copy_reg',	'error',	'escape',	'findall',

'finditer',	'match',	'purge',	'search',	'split',	'sre_compile',

'sre_parse',	'sub',	'subn',	'sys',	'template']

You	can	also	get	a	small	amount	of	documentation	on	a	particular	method	using
the	help	command	combined	with	the	desired	method.

>>>	help	(re.search)

Help	on	function	search	in	module	re:

search(pattern,	string,	flags=0)

				Scan	through	string	looking	for	a	match	to	the	pattern,	returning

				a	match	object,	or	None	if	no	match	was	found.

>>>

The	built-in	documentation	is	not	very	extensive,	but	it	can	be	helpful	when	you
are	in	a	hurry	or	don't	have	access	to	a	web	browser	or	search	engine.

Glossary

brittle	code
Code	that	works	when	the	input	data	is	in	a	particular	format	but	is	prone	to
breakage	 if	 there	 is	 some	 deviation	 from	 the	 correct	 format.	We	 call	 this
"brittle	code"	because	it	is	easily	broken.

greedy	matching
The	 notion	 that	 the	 +	 and	 *	 characters	 in	 a	 regular	 expression	 expand
outward	to	match	the	largest	possible	string.

grep
A	command	available	in	most	Unix	systems	that	searches	through	text	files
looking	for	lines	that	match	regular	expressions.	The	command	name	stands
for	"Generalized	Regular	Expression	Parser".

regular	expression
A	 language	 for	 expressing	 more	 complex	 search	 strings.	 A	 regular
expression	may	 contain	 special	 characters	 that	 indicate	 that	 a	 search	 only
matches	at	the	beginning	or	end	of	a	line	or	many	other	similar	capabilities.

wild	card
A	 special	 character	 that	matches	 any	 character.	 In	 regular	 expressions	 the
wild-card	character	is	the	period.

Exercises

Exercise	 1:	Write	 a	 simple	program	 to	 simulate	 the	 operation	of	 the	grep
command	on	Unix.	Ask	the	user	to	enter	a	regular	expression	and	count	the
number	of	lines	that	matched	the	regular	expression:

$	python	grep.py

Enter	a	regular	expression:	^Author

mbox.txt	had	1798	lines	that	matched	^Author

$	python	grep.py

Enter	a	regular	expression:	^X-

mbox.txt	had	14368	lines	that	matched	^X-

$	python	grep.py

Enter	a	regular	expression:	java$

mbox.txt	had	4175	lines	that	matched	java$

Exercise	2:	Write	a	program	to	look	for	lines	of	the	form:

New	Revision:	39772

Extract	 the	number	 from	each	of	 the	 lines	using	a	regular	expression	and
the	findall()	method.	Compute	the	average	of	the	numbers	and	print	out
the	average	as	an	integer.

Enter	file:mbox.txt

38549

Enter	file:mbox-short.txt

39756

Networked	programs
While	 many	 of	 the	 examples	 in	 this	 book	 have	 focused	 on	 reading	 files	 and
looking	 for	data	 in	 those	 files,	 there	are	many	different	 sources	of	 information
when	one	considers	the	Internet.

In	this	chapter	we	will	pretend	to	be	a	web	browser	and	retrieve	web	pages	using
the	 Hypertext	 Transfer	 Protocol	 (HTTP).	 Then	 we	 will	 read	 through	 the	 web
page	data	and	parse	it.

Hypertext	Transfer	Protocol	-	HTTP

The	network	protocol	 that	powers	 the	web	is	actually	quite	simple	and	there	 is
built-in	 support	 in	 Python	 called	 socket	 which	 makes	 it	 very	 easy	 to	 make
network	connections	and	retrieve	data	over	those	sockets	in	a	Python	program.

A	 socket	 is	 much	 like	 a	 file,	 except	 that	 a	 single	 socket	 provides	 a	 two-way
connection	between	two	programs.	You	can	both	read	from	and	write	to	the	same
socket.	If	you	write	something	to	a	socket,	it	is	sent	to	the	application	at	the	other
end	of	the	socket.	If	you	read	from	the	socket,	you	are	given	the	data	which	the
other	application	has	sent.

But	if	you	try	to	read	a	socket	when	the	program	on	the	other	end	of	the	socket
has	not	sent	any	data,	you	just	sit	and	wait.	If	the	programs	on	both	ends	of	the
socket	simply	wait	for	some	data	without	sending	anything,	they	will	wait	for	a
very	 long	 time,	 so	 an	 important	 part	 of	 programs	 that	 communicate	 over	 the
Internet	is	to	have	some	sort	of	protocol.

A	protocol	is	a	set	of	precise	rules	that	determine	who	is	to	go	first,	what	they	are
to	do,	and	then	what	the	responses	are	to	that	message,	and	who	sends	next,	and
so	 on.	 In	 a	 sense	 the	 two	 applications	 at	 either	 end	 of	 the	 socket	 are	 doing	 a
dance	and	making	sure	not	to	step	on	each	other's	toes.

There	are	many	documents	that	describe	these	network	protocols.	The	Hypertext
Transfer	Protocol	is	described	in	the	following	document:

https://www.w3.org/Protocols/rfc2616/rfc2616.txt

https://www.w3.org/Protocols/rfc2616/rfc2616.txt

This	is	a	long	and	complex	176-page	document	with	a	lot	of	detail.	If	you	find	it
interesting,	 feel	 free	 to	 read	 it	 all.	 But	 if	 you	 take	 a	 look	 around	 page	 36	 of
RFC2616	you	will	find	the	syntax	for	the	GET	request.	To	request	a	document
from	a	web	server,	we	make	a	connection,	 e.g.	 to	 the	www.pr4e.org	 server	on
port	80,	and	then	send	a	line	of	the	form

GET	http://data.pr4e.org/romeo.txt	HTTP/1.0

where	the	second	parameter	is	the	web	page	we	are	requesting,	and	then	we	also
send	 a	 blank	 line.	The	web	 server	will	 respond	with	 some	 header	 information
about	the	document	and	a	blank	line	followed	by	the	document	content.

The	world's	simplest	web	browser

Perhaps	the	easiest	way	to	show	how	the	HTTP	protocol	works	is	to	write	a	very
simple	Python	program	that	makes	a	connection	to	a	web	server	and	follows	the
rules	of	 the	HTTP	protocol	 to	 request	 a	document	and	display	what	 the	 server
sends	back.

import	socket

mysock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

mysock.connect(('data.pr4e.org',	80))

cmd	=	'GET	http://data.pr4e.org/romeo.txt	HTTP/1.0\r\n\r\n'.encode()

mysock.send(cmd)

while	True:

				data	=	mysock.recv(512)

				if	len(data)	<	1:

								break

				print(data.decode(),end='')

mysock.close()

#	Code:	http://www.py4e.com/code3/socket1.py

First	 the	program	makes	a	connection	 to	port	80	on	 the	server	www.pr4e.com.
Since	our	program	is	playing	the	role	of	the	"web	browser",	the	HTTP	protocol
says	we	must	send	the	GET	command	followed	by	a	blank	line.	\r\n	signifies	an
EOL	(end	of	line),	so	\r\n\r\n	signifies	nothing	between	two	EOL	sequences.

http://www.pr4e.com

That	is	the	equivalent	of	a	blank	line.

Your
Program

S
O
C
K
E
T

socket
connect
send
recv

www.py4e.com

Web	Pages
.
.
.

Port	80

A	Socket	Connection

Once	we	send	that	blank	line,	we	write	a	loop	that	receives	data	in	512-character
chunks	from	the	socket	and	prints	the	data	out	until	there	is	no	more	data	to	read
(i.e.,	the	recv()	returns	an	empty	string).

The	program	produces	the	following	output:

HTTP/1.1	200	OK

Date:	Wed,	11	Apr	2018	18:52:55	GMT

Server:	Apache/2.4.7	(Ubuntu)

Last-Modified:	Sat,	13	May	2017	11:22:22	GMT

ETag:	"a7-54f6609245537"

Accept-Ranges:	bytes

Content-Length:	167

Cache-Control:	max-age=0,	no-cache,	no-store,	must-revalidate

Pragma:	no-cache

Expires:	Wed,	11	Jan	1984	05:00:00	GMT

Connection:	close

Content-Type:	text/plain

But	soft	what	light	through	yonder	window	breaks

It	is	the	east	and	Juliet	is	the	sun

Arise	fair	sun	and	kill	the	envious	moon

Who	is	already	sick	and	pale	with	grief

The	 output	 starts	 with	 headers	 which	 the	 web	 server	 sends	 to	 describe	 the
document.	For	example,	the	Content-Type	header	indicates	that	the	document	is
a	plain	text	document	(text/plain).

After	the	server	sends	us	the	headers,	it	adds	a	blank	line	to	indicate	the	end	of
the	headers,	and	then	sends	the	actual	data	of	the	file	romeo.txt.

This	example	shows	how	to	make	a	low-level	network	connection	with	sockets.
Sockets	can	be	used	to	communicate	with	a	web	server	or	with	a	mail	server	or
many	other	kinds	of	 servers.	All	 that	 is	 needed	 is	 to	 find	 the	document	which
describes	the	protocol	and	write	the	code	to	send	and	receive	the	data	according
to	the	protocol.

However,	 since	 the	 protocol	 that	 we	 use	 most	 commonly	 is	 the	 HTTP	 web
protocol,	Python	has	a	special	library	specifically	designed	to	support	the	HTTP
protocol	for	the	retrieval	of	documents	and	data	over	the	web.

One	 of	 the	 requirements	 for	 using	 the	HTTP	protocol	 is	 the	 need	 to	 send	 and
receive	data	 as	bytes	objects,	 instead	of	 strings.	 In	 the	preceding	 example,	 the
encode()	 and	 decode()	 methods	 convert	 strings	 into	 bytes	 objects	 and	 back
again.

The	next	example	uses	b''	notation	to	specify	that	a	variable	should	be	stored	as
a	bytes	object.	encode()	and	b''	are	equivalent.

>>>	b'Hello	world'

b'Hello	world'

>>>	'Hello	world'.encode()

b'Hello	world'

Retrieving	an	image	over	HTTP

In	 the	above	example,	we	retrieved	a	plain	 text	 file	which	had	newlines	 in	 the
file	and	we	simply	copied	the	data	to	the	screen	as	the	program	ran.	We	can	use	a
similar	program	to	retrieve	an	image	across	using	HTTP.	Instead	of	copying	the
data	to	the	screen	as	the	program	runs,	we	accumulate	the	data	in	a	string,	trim
off	the	headers,	and	then	save	the	image	data	to	a	file	as	follows:

import	socket

import	time

HOST	=	'data.pr4e.org'

PORT	=	80

mysock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM)

mysock.connect((HOST,	PORT))

mysock.sendall(b'GET	http://data.pr4e.org/cover3.jpg	HTTP/1.0\r\n\r\n

count	=	0

picture	=	b""

while	True:

				data	=	mysock.recv(5120)

				if	len(data)	<	1:	break

				#time.sleep(0.25)

				count	=	count	+	len(data)

				print(len(data),	count)

				picture	=	picture	+	data

mysock.close()

#	Look	for	the	end	of	the	header	(2	CRLF)

pos	=	picture.find(b"\r\n\r\n")

print('Header	length',	pos)

print(picture[:pos].decode())

#	Skip	past	the	header	and	save	the	picture	data

picture	=	picture[pos+4:]

fhand	=	open("stuff.jpg",	"wb")

fhand.write(picture)

fhand.close()

#	Code:	http://www.py4e.com/code3/urljpeg.py

When	the	program	runs,	it	produces	the	following	output:

$	python	urljpeg.py

5120	5120

5120	10240

4240	14480

5120	19600

...

5120	214000

3200	217200

5120	222320

5120	227440

3167	230607

Header	length	393

HTTP/1.1	200	OK

Date:	Wed,	11	Apr	2018	18:54:09	GMT

Server:	Apache/2.4.7	(Ubuntu)

Last-Modified:	Mon,	15	May	2017	12:27:40	GMT

ETag:	"38342-54f8f2e5b6277"

Accept-Ranges:	bytes

Content-Length:	230210

Vary:	Accept-Encoding

Cache-Control:	max-age=0,	no-cache,	no-store,	must-revalidate

Pragma:	no-cache

Expires:	Wed,	11	Jan	1984	05:00:00	GMT

Connection:	close

Content-Type:	image/jpeg

You	can	see	that	for	this	url,	the	Content-Type	header	indicates	that	body	of	the
document	is	an	image	(image/jpeg).	Once	the	program	completes,	you	can	view
the	image	data	by	opening	the	file	stuff.jpg	in	an	image	viewer.

As	the	program	runs,	you	can	see	that	we	don't	get	5120	characters	each	time	we
call	 the	 recv()	 method.	We	 get	 as	 many	 characters	 as	 have	 been	 transferred
across	the	network	to	us	by	the	web	server	at	the	moment	we	call	recv().	In	this
example,	we	 either	 get	 as	 few	 as	 3200	 characters	 each	 time	we	 request	 up	 to
5120	characters	of	data.

Your	results	may	be	different	depending	on	your	network	speed.	Also	note	that
on	the	last	call	to	recv()	we	get	3167	bytes,	which	is	the	end	of	the	stream,	and
in	the	next	call	to	recv()	we	get	a	zero-length	string	that	tells	us	that	the	server
has	 called	 close()	 on	 its	 end	 of	 the	 socket	 and	 there	 is	 no	 more	 data
forthcoming.

We	 can	 slow	 down	 our	 successive	 recv()	 calls	 by	 uncommenting	 the	 call	 to
time.sleep().	This	way,	we	wait	a	quarter	of	a	second	after	each	call	so	that	the
server	 can	 "get	 ahead"	 of	 us	 and	 send	more	 data	 to	 us	 before	we	 call	recv()
again.	With	the	delay,	in	place	the	program	executes	as	follows:

$	python	urljpeg.py

5120	5120

5120	10240

5120	15360

...

5120	225280

5120	230400

207	230607

Header	length	393

HTTP/1.1	200	OK

Date:	Wed,	11	Apr	2018	21:42:08	GMT

Server:	Apache/2.4.7	(Ubuntu)

Last-Modified:	Mon,	15	May	2017	12:27:40	GMT

ETag:	"38342-54f8f2e5b6277"

Accept-Ranges:	bytes

Content-Length:	230210

Vary:	Accept-Encoding

Cache-Control:	max-age=0,	no-cache,	no-store,	must-revalidate

Pragma:	no-cache

Expires:	Wed,	11	Jan	1984	05:00:00	GMT

Connection:	close

Content-Type:	image/jpeg

Now	other	 than	 the	 first	 and	 last	 calls	 to	recv(),	we	now	get	5120	characters
each	time	we	ask	for	new	data.

There	is	a	buffer	between	the	server	making	send()	requests	and	our	application
making	recv()	 requests.	When	we	run	 the	program	with	 the	delay	 in	place,	at
some	 point	 the	 server	 might	 fill	 up	 the	 buffer	 in	 the	 socket	 and	 be	 forced	 to
pause	 until	 our	 program	 starts	 to	 empty	 the	 buffer.	 The	 pausing	 of	 either	 the
sending	application	or	the	receiving	application	is	called	"flow	control."

Retrieving	web	pages	with	urllib

While	 we	 can	 manually	 send	 and	 receive	 data	 over	 HTTP	 using	 the	 socket
library,	there	is	a	much	simpler	way	to	perform	this	common	task	in	Python	by
using	the	urllib	library.

Using	urllib,	you	can	 treat	 a	web	page	much	 like	a	 file.	You	simply	 indicate
which	web	page	you	would	like	to	retrieve	and	urllib	handles	all	of	the	HTTP
protocol	and	header	details.

The	equivalent	code	to	read	the	romeo.txt	file	from	the	web	using	urllib	 is	as
follows:

import	urllib.request

fhand	=	urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

for	line	in	fhand:

				print(line.decode().strip())

#	Code:	http://www.py4e.com/code3/urllib1.py

Once	 the	 web	 page	 has	 been	 opened	 with	 urllib.request.urlopen,	 we	 can
treat	it	like	a	file	and	read	through	it	using	a	for	loop.

When	the	program	runs,	we	only	see	the	output	of	the	contents	of	the	file.	The
headers	are	still	sent,	but	the	urllib	code	consumes	the	headers	and	only	returns
the	data	to	us.

But	soft	what	light	through	yonder	window	breaks

It	is	the	east	and	Juliet	is	the	sun

Arise	fair	sun	and	kill	the	envious	moon

Who	is	already	sick	and	pale	with	grief

As	an	example,	we	can	write	a	program	to	retrieve	the	data	for	romeo.txt	and
compute	the	frequency	of	each	word	in	the	file	as	follows:

import	urllib.request,	urllib.parse,	urllib.error

fhand	=	urllib.request.urlopen('http://data.pr4e.org/romeo.txt')

counts	=	dict()

for	line	in	fhand:

				words	=	line.decode().split()

				for	word	in	words:

								counts[word]	=	counts.get(word,	0)	+	1

print(counts)

#	Code:	http://www.py4e.com/code3/urlwords.py

Again,	once	we	have	opened	the	web	page,	we	can	read	it	like	a	local	file.

Reading	binary	files	using	urllib

Sometimes	you	want	to	retrieve	a	non-text	(or	binary)	file	such	as	an	image	or
video	file.	The	data	in	these	files	is	generally	not	useful	to	print	out,	but	you	can
easily	make	a	copy	of	a	URL	to	a	local	file	on	your	hard	disk	using	urllib.

The	pattern	is	to	open	the	URL	and	use	read	to	download	the	entire	contents	of
the	document	 into	a	string	variable	 (img)	 then	write	 that	 information	 to	a	 local
file	as	follows:

import	urllib.request,	urllib.parse,	urllib.error

img	=	urllib.request.urlopen('http://data.pr4e.org/cover3.jpg').read()

fhand	=	open('cover3.jpg',	'wb')

fhand.write(img)

fhand.close()

#	Code:	http://www.py4e.com/code3/curl1.py

This	program	reads	all	of	the	data	in	at	once	across	the	network	and	stores	it	in
the	 variable	 img	 in	 the	 main	 memory	 of	 your	 computer,	 then	 opens	 the	 file
cover.jpg	 and	writes	 the	 data	 out	 to	 your	 disk.	 The	 wb	 argument	 for	 open()
opens	a	binary	file	for	writing	only.	This	program	will	work	if	the	size	of	the	file
is	less	than	the	size	of	the	memory	of	your	computer.

However	if	this	is	a	large	audio	or	video	file,	this	program	may	crash	or	at	least
run	extremely	slowly	when	your	computer	runs	out	of	memory.	In	order	to	avoid
running	out	of	memory,	we	retrieve	the	data	in	blocks	(or	buffers)	and	then	write
each	block	to	your	disk	before	retrieving	the	next	block.	This	way	the	program
can	 read	 any	 size	 file	 without	 using	 up	 all	 of	 the	 memory	 you	 have	 in	 your
computer.

import	urllib.request,	urllib.parse,	urllib.error

img	=	urllib.request.urlopen('http://data.pr4e.org/cover3.jpg')

fhand	=	open('cover3.jpg',	'wb')

size	=	0

while	True:

				info	=	img.read(100000)

				if	len(info)	<	1:	break

				size	=	size	+	len(info)

				fhand.write(info)

print(size,	'characters	copied.')

fhand.close()

#	Code:	http://www.py4e.com/code3/curl2.py

In	this	example,	we	read	only	100,000	characters	at	a	time	and	then	write	those
characters	to	the	cover3.jpg	file	before	retrieving	the	next	100,000	characters	of
data	from	the	web.

This	program	runs	as	follows:

python	curl2.py

230210	characters	copied.

Parsing	HTML	and	scraping	the	web

One	of	the	common	uses	of	the	urllib	capability	in	Python	is	to	scrape	the	web.
Web	scraping	is	when	we	write	a	program	that	pretends	to	be	a	web	browser	and
retrieves	pages,	then	examines	the	data	in	those	pages	looking	for	patterns.

As	an	example,	a	 search	engine	such	as	Google	will	 look	at	 the	source	of	one
web	page	and	extract	the	links	to	other	pages	and	retrieve	those	pages,	extracting
links,	and	so	on.	Using	this	technique,	Google	spiders	its	way	through	nearly	all
of	the	pages	on	the	web.

Google	also	uses	the	frequency	of	links	from	pages	it	finds	to	a	particular	page
as	 one	 measure	 of	 how	 "important"	 a	 page	 is	 and	 how	 high	 the	 page	 should
appear	in	its	search	results.

Parsing	HTML	using	regular	expressions

One	 simple	 way	 to	 parse	 HTML	 is	 to	 use	 regular	 expressions	 to	 repeatedly
search	for	and	extract	substrings	that	match	a	particular	pattern.

Here	is	a	simple	web	page:

<h1>The	First	Page</h1>

<p>

If	you	like,	you	can	switch	to	the

Second	Page.

</p>

We	can	construct	a	well-formed	regular	expression	to	match	and	extract	the	link
values	from	the	above	text	as	follows:

href="http[s]?://.+?"

Our	 regular	 expression	 looks	 for	 strings	 that	 start	 with	 "href="http://"	 or
"href="https://",	followed	by	one	or	more	characters	(.+?),	followed	by	another

double	 quote.	 The	 question	 mark	 behind	 the	 [s]?	 indicates	 to	 search	 for	 the
string	"http"	followed	by	zero	or	one	"s".

The	question	mark	added	to	the	.+?	 indicates	that	 the	match	is	 to	be	done	in	a
"non-greedy"	fashion	instead	of	a	"greedy"	fashion.	A	non-greedy	match	tries	to
find	 the	smallest	 possible	matching	 string	and	a	greedy	match	 tries	 to	 find	 the
largest	possible	matching	string.

We	 add	 parentheses	 to	 our	 regular	 expression	 to	 indicate	 which	 part	 of	 our
matched	string	we	would	like	to	extract,	and	produce	the	following	program:

#	Search	for	link	values	within	URL	input

import	urllib.request,	urllib.parse,	urllib.error

import	re

import	ssl

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

url	=	input('Enter	-	')

html	=	urllib.request.urlopen(url,	context=ctx).read()

links	=	re.findall(b'href="(http[s]?://.*?)"',	html)

for	link	in	links:

				print(link.decode())

#	Code:	http://www.py4e.com/code3/urlregex.py

The	 ssl	 library	 allows	 this	 program	 to	 access	 web	 sites	 that	 strictly	 enforce
HTTPS.	The	read	method	returns	HTML	source	code	as	a	bytes	object	instead
of	returning	an	HTTPResponse	object.	The	findall	regular	expression	method
will	give	us	a	list	of	all	of	the	strings	that	match	our	regular	expression,	returning
only	the	link	text	between	the	double	quotes.

When	we	run	the	program	and	input	a	URL,	we	get	the	following	output:

Enter	-	https://docs.python.org

https://docs.python.org/3/index.html

https://www.python.org/

https://docs.python.org/3.8/

https://docs.python.org/3.7/

https://docs.python.org/3.5/

https://docs.python.org/2.7/

https://www.python.org/doc/versions/

https://www.python.org/dev/peps/

https://wiki.python.org/moin/BeginnersGuide

https://wiki.python.org/moin/PythonBooks

https://www.python.org/doc/av/

https://www.python.org/

https://www.python.org/psf/donations/

http://sphinx.pocoo.org/

Regular	expressions	work	very	nicely	when	your	HTML	is	well	 formatted	and
predictable.	 But	 since	 there	 are	 a	 lot	 of	 "broken"	 HTML	 pages	 out	 there,	 a
solution	only	using	regular	expressions	might	either	miss	some	valid	links	or	end
up	with	bad	data.

This	can	be	solved	by	using	a	robust	HTML	parsing	library.

Parsing	HTML	using	BeautifulSoup

Even	though	HTML	looks	like	XML1	and	some	pages	are	carefully	constructed
to	be	XML,	most	HTML	is	generally	broken	in	ways	that	cause	an	XML	parser
to	reject	the	entire	page	of	HTML	as	improperly	formed.

There	 are	 a	 number	 of	 Python	 libraries	which	 can	 help	 you	 parse	HTML	 and
extract	 data	 from	 the	 pages.	 Each	 of	 the	 libraries	 has	 its	 strengths	 and
weaknesses	and	you	can	pick	one	based	on	your	needs.

As	an	example,	we	will	simply	parse	some	HTML	input	and	extract	links	using
the	BeautifulSoup	library.	BeautifulSoup	tolerates	highly	flawed	HTML	and	still
lets	 you	 easily	 extract	 the	 data	 you	 need.	 You	 can	 download	 and	 install	 the
BeautifulSoup	code	from:

https://pypi.python.org/pypi/beautifulsoup4

Information	on	installing	BeautifulSoup	with	the	Python	Package	Index	tool	pip
is	available	at:

https://packaging.python.org/tutorials/installing-packages/

We	will	use	urllib	to	read	the	page	and	then	use	BeautifulSoup	to	extract	the

https://pypi.python.org/pypi/beautifulsoup4
https://packaging.python.org/tutorials/installing-packages/

href	attributes	from	the	anchor	(a)	tags.

#	To	run	this,	download	the	BeautifulSoup	zip	file

#	http://www.py4e.com/code3/bs4.zip

#	and	unzip	it	in	the	same	directory	as	this	file

import	urllib.request,	urllib.parse,	urllib.error

from	bs4	import	BeautifulSoup

import	ssl

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

url	=	input('Enter	-	')

html	=	urllib.request.urlopen(url,	context=ctx).read()

soup	=	BeautifulSoup(html,	'html.parser')

#	Retrieve	all	of	the	anchor	tags

tags	=	soup('a')

for	tag	in	tags:

				print(tag.get('href',	None))

#	Code:	http://www.py4e.com/code3/urllinks.py

The	program	prompts	for	a	web	address,	then	opens	the	web	page,	reads	the	data
and	 passes	 the	 data	 to	 the	 BeautifulSoup	 parser,	 and	 then	 retrieves	 all	 of	 the
anchor	tags	and	prints	out	the	href	attribute	for	each	tag.

When	the	program	runs,	it	produces	the	following	output:

Enter	-	https://docs.python.org

genindex.html

py-modindex.html

https://www.python.org/

#

whatsnew/3.6.html

whatsnew/index.html

tutorial/index.html

library/index.html

reference/index.html

using/index.html

howto/index.html

installing/index.html

distributing/index.html

extending/index.html

c-api/index.html

faq/index.html

py-modindex.html

genindex.html

glossary.html

search.html

contents.html

bugs.html

about.html

license.html

copyright.html

download.html

https://docs.python.org/3.8/

https://docs.python.org/3.7/

https://docs.python.org/3.5/

https://docs.python.org/2.7/

https://www.python.org/doc/versions/

https://www.python.org/dev/peps/

https://wiki.python.org/moin/BeginnersGuide

https://wiki.python.org/moin/PythonBooks

https://www.python.org/doc/av/

genindex.html

py-modindex.html

https://www.python.org/

#

copyright.html

https://www.python.org/psf/donations/

bugs.html

http://sphinx.pocoo.org/

This	list	is	much	longer	because	some	HTML	anchor	tags	are	relative	paths	(e.g.,
tutorial/index.html)	or	in-page	references	(e.g.,	'#')	that	do	not	include	"http://"	or
"https://",	which	was	a	requirement	in	our	regular	expression.

You	can	use	also	BeautifulSoup	to	pull	out	various	parts	of	each	tag:

#	To	run	this,	download	the	BeautifulSoup	zip	file

#	http://www.py4e.com/code3/bs4.zip

#	and	unzip	it	in	the	same	directory	as	this	file

from	urllib.request	import	urlopen

from	bs4	import	BeautifulSoup

import	ssl

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

url	=	input('Enter	-	')

html	=	urlopen(url,	context=ctx).read()

soup	=	BeautifulSoup(html,	"html.parser")

#	Retrieve	all	of	the	anchor	tags

tags	=	soup('a')

for	tag	in	tags:

				#	Look	at	the	parts	of	a	tag

				print('TAG:',	tag)

				print('URL:',	tag.get('href',	None))

				print('Contents:',	tag.contents[0])

				print('Attrs:',	tag.attrs)

#	Code:	http://www.py4e.com/code3/urllink2.py

python	urllink2.py

Enter	-	http://www.dr-chuck.com/page1.htm

TAG:	

Second	Page

URL:	http://www.dr-chuck.com/page2.htm

Content:	['\nSecond	Page']

Attrs:	[('href',	'http://www.dr-chuck.com/page2.htm')]

html.parser	 is	 the	 HTML	 parser	 included	 in	 the	 standard	 Python	 3	 library.
Information	on	other	HTML	parsers	is	available	at:

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

These	examples	only	begin	to	show	the	power	of	BeautifulSoup	when	it	comes
to	parsing	HTML.

http://www.crummy.com/software/BeautifulSoup/bs4/doc/#installing-a-parser

Bonus	section	for	Unix	/	Linux	users

If	 you	 have	 a	 Linux,	 Unix,	 or	 Macintosh	 computer,	 you	 probably	 have
commands	 built	 in	 to	 your	 operating	 system	 that	 retrieves	 both	 plain	 text	 and
binary	 files	 using	 the	 HTTP	 or	 File	 Transfer	 (FTP)	 protocols.	 One	 of	 these
commands	is	curl:

$	curl	-O	http://www.py4e.com/cover.jpg

The	 command	 curl	 is	 short	 for	 "copy	 URL"	 and	 so	 the	 two	 examples	 listed
earlier	 to	 retrieve	 binary	 files	 with	 urllib	 are	 cleverly	 named	 curl1.py	 and
curl2.py	 on	www.py4e.com/code3	 as	 they	 implement	 similar	 functionality	 to
the	curl	command.	There	is	also	a	curl3.py	sample	program	that	does	this	task
a	 little	 more	 effectively,	 in	 case	 you	 actually	 want	 to	 use	 this	 pattern	 in	 a
program	you	are	writing.

A	second	command	that	functions	very	similarly	is	wget:

$	wget	http://www.py4e.com/cover.jpg

Both	 of	 these	 commands	make	 retrieving	webpages	 and	 remote	 files	 a	 simple
task.

Glossary

BeautifulSoup
A	 Python	 library	 for	 parsing	HTML	 documents	 and	 extracting	 data	 from
HTML	 documents	 that	 compensates	 for	most	 of	 the	 imperfections	 in	 the
HTML	 that	 browsers	 generally	 ignore.	 You	 can	 download	 the
BeautifulSoup	code	from	www.crummy.com.

port
A	 number	 that	 generally	 indicates	 which	 application	 you	 are	 contacting
when	you	make	a	socket	connection	to	a	server.	As	an	example,	web	traffic
usually	uses	port	80	while	email	traffic	uses	port	25.

scrape

http://www.py4e.com/code3
http://www.crummy.com

When	a	program	pretends	 to	be	a	web	browser	and	 retrieves	a	web	page,
then	looks	at	the	web	page	content.	Often	programs	are	following	the	links
in	one	page	to	find	the	next	page	so	they	can	traverse	a	network	of	pages	or
a	social	network.

socket
A	network	connection	between	two	applications	where	the	applications	can
send	and	receive	data	in	either	direction.

spider
The	 act	 of	 a	 web	 search	 engine	 retrieving	 a	 page	 and	 then	 all	 the	 pages
linked	from	a	page	and	so	on	until	they	have	nearly	all	of	the	pages	on	the
Internet	which	they	use	to	build	their	search	index.

Exercises

Exercise	1:	Change	the	socket	program	socket1.py	 to	prompt	the	user	for
the	URL	so	it	can	read	any	web	page.	You	can	use	split('/')	to	break	the
URL	 into	 its	 component	 parts	 so	 you	 can	 extract	 the	 host	 name	 for	 the
socket	connect	call.	Add	error	checking	using	try	and	except	to	handle	the
condition	 where	 the	 user	 enters	 an	 improperly	 formatted	 or	 non-existent
URL.

Exercise	 2:	Change	 your	 socket	 program	 so	 that	 it	 counts	 the	 number	 of
characters	 it	has	received	and	stops	displaying	any	text	after	 it	has	shown
3000	 characters.	 The	 program	 should	 retrieve	 the	 entire	 document	 and
count	the	total	number	of	characters	and	display	the	count	of	the	number	of
characters	at	the	end	of	the	document.

Exercise	3:	Use	urllib	to	replicate	the	previous	exercise	of	(1)	retrieving	the
document	 from	 a	 URL,	 (2)	 displaying	 up	 to	 3000	 characters,	 and	 (3)
counting	 the	 overall	 number	 of	 characters	 in	 the	 document.	 Don't	 worry
about	the	headers	for	this	exercise,	simply	show	the	first	3000	characters	of
the	document	contents.

Exercise	 4:	 Change	 the	 urllinks.py	 program	 to	 extract	 and	 count
paragraph	 (p)	 tags	 from	 the	 retrieved	 HTML	 document	 and	 display	 the
count	of	the	paragraphs	as	the	output	of	your	program.	Do	not	display	the
paragraph	text,	only	count	 them.	Test	your	program	on	several	small	web
pages	as	well	as	some	larger	web	pages.

Exercise	 5:	 (Advanced)	Change	 the	 socket	 program	 so	 that	 it	 only	 shows
data	after	the	headers	and	a	blank	line	have	been	received.	Remember	that
recv	receives	characters	(newlines	and	all),	not	lines.

1.	 The	XML	format	is	described	in	the	next	chapter.↩

Using	Web	Services
Once	 it	 became	 easy	 to	 retrieve	 documents	 and	 parse	 documents	 over	 HTTP
using	programs,	 it	 did	 not	 take	 long	 to	 develop	 an	 approach	where	we	 started
producing	documents	 that	were	 specifically	designed	 to	be	consumed	by	other
programs	(i.e.,	not	HTML	to	be	displayed	in	a	browser).

There	 are	 two	 common	 formats	 that	we	 use	when	 exchanging	 data	 across	 the
web.	eXtensible	Markup	Language	(XML)	has	been	in	use	for	a	very	long	time
and	is	best	suited	for	exchanging	document-style	data.	When	programs	just	want
to	exchange	dictionaries,	lists,	or	other	internal	information	with	each	other,	they
use	JavaScript	Object	Notation	(JSON)	(see	www.json.org).	We	will	look	at	both
formats.

eXtensible	Markup	Language	-	XML

XML	 looks	 very	 similar	 to	HTML,	 but	XML	 is	more	 structured	 than	HTML.
Here	is	a	sample	of	an	XML	document:

<person>

		<name>Chuck</name>

		<phone	type="intl">

				+1	734	303	4456

		</phone>

		<email	hide="yes"	/>

</person>

Each	 pair	 of	 opening	 (e.g.,	 <person>)	 and	 closing	 tags	 (e.g.,	 </person>)
represents	a	element	or	node	with	the	same	name	as	the	tag	(e.g.,	person).	Each
element	 can	 have	 some	 text,	 some	 attributes	 (e.g.,	 hide),	 and	 other	 nested
elements.	 If	 an	 XML	 element	 is	 empty	 (i.e.,	 has	 no	 content),	 then	 it	 may	 be
depicted	by	a	self-closing	tag	(e.g.,	<email	/>).

Often	it	is	helpful	to	think	of	an	XML	document	as	a	tree	structure	where	there	is
a	top	element	(here:	person),	and	other	tags	(e.g.,	phone)	are	drawn	as	children
of	their	parent	elements.

http://www.json.org

name

person

phone email

A	Tree	Representation	of	XML

Parsing	XML

Here	 is	 a	 simple	 application	 that	 parses	 some	 XML	 and	 extracts	 some	 data
elements	from	the	XML:

import	xml.etree.ElementTree	as	ET

data	=	'''

<person>

		<name>Chuck</name>

		<phone	type="intl">

				+1	734	303	4456

		</phone>

		<email	hide="yes"	/>

</person>'''

tree	=	ET.fromstring(data)

print('Name:',	tree.find('name').text)

print('Attr:',	tree.find('email').get('hide'))

#	Code:	http://www.py4e.com/code3/xml1.py

The	triple	single	quote	('''),	as	well	as	the	triple	double	quote	("""),	allow	for
the	creation	of	strings	that	span	multiple	lines.

Calling	fromstring	converts	the	string	representation	of	the	XML	into	a	"tree"
of	XML	elements.	When	the	XML	is	in	a	tree,	we	have	a	series	of	methods	we
can	 call	 to	 extract	 portions	 of	 data	 from	 the	 XML	 string.	 The	 find	 function
searches	 through	 the	 XML	 tree	 and	 retrieves	 the	 element	 that	 matches	 the
specified	tag.

Name:	Chuck

Attr:	yes

Using	 an	 XML	 parser	 such	 as	 ElementTree	 has	 the	 advantage	 that	 while	 the
XML	in	this	example	is	quite	simple,	it	turns	out	there	are	many	rules	regarding
valid	XML,	and	using	ElementTree	allows	us	to	extract	data	from	XML	without
worrying	about	the	rules	of	XML	syntax.

Looping	through	nodes

Often	the	XML	has	multiple	nodes	and	we	need	to	write	a	loop	to	process	all	of
the	nodes.	In	the	following	program,	we	loop	through	all	of	the	user	nodes:

import	xml.etree.ElementTree	as	ET

input	=	'''

<stuff>

		<users>

				<user	x="2">

						<id>001</id>

						<name>Chuck</name>

				</user>

				<user	x="7">

						<id>009</id>

						<name>Brent</name>

				</user>

		</users>

</stuff>'''

stuff	=	ET.fromstring(input)

lst	=	stuff.findall('users/user')

print('User	count:',	len(lst))

for	item	in	lst:

				print('Name',	item.find('name').text)

				print('Id',	item.find('id').text)

				print('Attribute',	item.get('x'))

#	Code:	http://www.py4e.com/code3/xml2.py

The	findall	method	retrieves	a	Python	 list	of	subtrees	 that	 represent	 the	user
structures	in	the	XML	tree.	Then	we	can	write	a	for	 loop	that	looks	at	each	of

the	user	nodes,	and	prints	the	name	and	id	text	elements	as	well	as	the	x	attribute
from	the	user	node.

User	count:	2

Name	Chuck

Id	001

Attribute	2

Name	Brent

Id	009

Attribute	7

It	 is	 important	 to	 include	 all	 parent	 level	 elements	 in	 the	 findall	 statement
except	for	the	top	level	element	(e.g.,	users/user).	Otherwise,	Python	will	not
find	any	desired	nodes.

import	xml.etree.ElementTree	as	ET

input	=	'''

<stuff>

		<users>

				<user	x="2">

						<id>001</id>

						<name>Chuck</name>

				</user>

				<user	x="7">

						<id>009</id>

						<name>Brent</name>

				</user>

		</users>

</stuff>'''

stuff	=	ET.fromstring(input)

lst	=	stuff.findall('users/user')

print('User	count:',	len(lst))

lst2	=	stuff.findall('user')

print('User	count:',	len(lst2))

lst	stores	all	user	elements	that	are	nested	within	their	users	parent.	lst2	looks
for	user	elements	that	are	not	nested	within	the	top	level	stuff	element	where
there	are	none.

User	count:	2

User	count:	0

JavaScript	Object	Notation	-	JSON

The	 JSON	 format	 was	 inspired	 by	 the	 object	 and	 array	 format	 used	 in	 the
JavaScript	language.	But	since	Python	was	invented	before	JavaScript,	Python's
syntax	for	dictionaries	and	lists	influenced	the	syntax	of	JSON.	So	the	format	of
JSON	is	nearly	identical	to	a	combination	of	Python	lists	and	dictionaries.

Here	 is	 a	 JSON	 encoding	 that	 is	 roughly	 equivalent	 to	 the	 simple	XML	 from
above:

{

		"name"	:	"Chuck",

		"phone"	:	{

				"type"	:	"intl",

				"number"	:	"+1	734	303	4456"

			},

			"email"	:	{

					"hide"	:	"yes"

			}

}

You	will	notice	some	differences.	First,	in	XML,	we	can	add	attributes	like	"intl"
to	 the	 "phone"	 tag.	 In	 JSON,	we	 simply	 have	 key-value	 pairs.	Also	 the	XML
"person"	tag	is	gone,	replaced	by	a	set	of	outer	curly	braces.

In	 general,	 JSON	 structures	 are	 simpler	 than	 XML	 because	 JSON	 has	 fewer
capabilities	than	XML.	But	JSON	has	the	advantage	that	it	maps	directly	to	some
combination	 of	 dictionaries	 and	 lists.	 And	 since	 nearly	 all	 programming
languages	have	something	equivalent	to	Python's	dictionaries	and	lists,	JSON	is
a	very	natural	format	to	have	two	cooperating	programs	exchange	data.

JSON	 is	 quickly	 becoming	 the	 format	 of	 choice	 for	 nearly	 all	 data	 exchange
between	applications	because	of	its	relative	simplicity	compared	to	XML.

Parsing	JSON

We	 construct	 our	 JSON	 by	 nesting	 dictionaries	 and	 lists	 as	 needed.	 In	 this
example,	we	represent	a	list	of	users	where	each	user	is	a	set	of	key-value	pairs
(i.e.,	a	dictionary).	So	we	have	a	list	of	dictionaries.

In	the	following	program,	we	use	the	built-in	json	library	to	parse	the	JSON	and
read	through	the	data.	Compare	this	closely	to	the	equivalent	XML	data	and	code
above.	 The	 JSON	 has	 less	 detail,	 so	 we	 must	 know	 in	 advance	 that	 we	 are
getting	a	list	and	that	the	list	is	of	users	and	each	user	is	a	set	of	key-value	pairs.
The	 JSON	 is	 more	 succinct	 (an	 advantage)	 but	 also	 is	 less	 self-describing	 (a
disadvantage).

import	json

data	=	'''

[

		{	"id"	:	"001",

				"x"	:	"2",

				"name"	:	"Chuck"

		}	,

		{	"id"	:	"009",

				"x"	:	"7",

				"name"	:	"Brent"

		}

]'''

info	=	json.loads(data)

print('User	count:',	len(info))

for	item	in	info:

				print('Name',	item['name'])

				print('Id',	item['id'])

				print('Attribute',	item['x'])

#	Code:	http://www.py4e.com/code3/json2.py

If	you	compare	the	code	to	extract	data	from	the	parsed	JSON	and	XML	you	will
see	that	what	we	get	from	json.loads()	is	a	Python	list	which	we	traverse	with
a	for	loop,	and	each	item	within	that	list	is	a	Python	dictionary.	Once	the	JSON
has	been	parsed,	we	can	use	the	Python	index	operator	to	extract	the	various	bits
of	data	for	each	user.	We	don't	have	to	use	the	JSON	library	to	dig	through	the
parsed	JSON,	since	the	returned	data	is	simply	native	Python	structures.

The	output	of	this	program	is	exactly	the	same	as	the	XML	version	above.

User	count:	2

Name	Chuck

Id	001

Attribute	2

Name	Brent

Id	009

Attribute	7

In	 general,	 there	 is	 an	 industry	 trend	 away	 from	XML	 and	 towards	 JSON	 for
web	 services.	 Because	 the	 JSON	 is	 simpler	 and	more	 directly	maps	 to	 native
data	structures	we	already	have	in	programming	languages,	the	parsing	and	data
extraction	code	is	usually	simpler	and	more	direct	when	using	JSON.	But	XML
is	more	 self-descriptive	 than	 JSON	 and	 so	 there	 are	 some	 applications	 where
XML	retains	an	advantage.	For	example,	most	word	processors	store	documents
internally	using	XML	rather	than	JSON.

Application	Programming	Interfaces

We	now	have	the	ability	to	exchange	data	between	applications	using	HyperText
Transport	 Protocol	 (HTTP)	 and	 a	 way	 to	 represent	 complex	 data	 that	 we	 are
sending	 back	 and	 forth	 between	 these	 applications	 using	 eXtensible	 Markup
Language	(XML)	or	JavaScript	Object	Notation	(JSON).

The	 next	 step	 is	 to	 begin	 to	 define	 and	 document	 "contracts"	 between
applications	using	 these	 techniques.	The	general	name	for	 these	application-to-
application	contracts	is	Application	Program	Interfaces	(APIs).	When	we	use	an
API,	generally	one	program	makes	a	 set	of	services	 available	 for	use	by	other
applications	and	publishes	 the	APIs	 (i.e.,	 the	 "rules")	 that	must	be	 followed	 to
access	the	services	provided	by	the	program.

When	we	begin	 to	build	our	programs	where	 the	 functionality	of	our	program
includes	access	to	services	provided	by	other	programs,	we	call	the	approach	a
Service-oriented	architecture	(SOA).	A	SOA	approach	is	one	where	our	overall
application	makes	use	of	the	services	of	other	applications.	A	non-SOA	approach
is	where	the	application	is	a	single	standalone	application	which	contains	all	of
the	code	necessary	to	implement	the	application.

We	see	many	examples	of	SOA	when	we	use	the	web.	We	can	go	to	a	single	web

site	and	book	air	travel,	hotels,	and	automobiles	all	from	a	single	site.	The	data
for	hotels	 is	not	stored	on	 the	airline	computers.	 Instead,	 the	airline	computers
contact	 the	 services	 on	 the	 hotel	 computers	 and	 retrieve	 the	 hotel	 data	 and
present	it	to	the	user.	When	the	user	agrees	to	make	a	hotel	reservation	using	the
airline	 site,	 the	 airline	 site	 uses	 another	 web	 service	 on	 the	 hotel	 systems	 to
actually	make	 the	 reservation.	 And	when	 it	 comes	 time	 to	 charge	 your	 credit
card	 for	 the	 whole	 transaction,	 still	 other	 computers	 become	 involved	 in	 the
process.

Auto	
Rental	
Service

Hotel
Reservation	
Service

Airline
Reservation	
Service

Travel
Application

API

API API

Service-oriented	architecture

A	Service-oriented	architecture	has	many	advantages,	 including:	(1)	we	always
maintain	only	one	copy	of	data	(this	is	particularly	important	for	things	like	hotel
reservations	where	we	do	not	want	 to	over-commit)	 and	 (2)	 the	owners	of	 the
data	can	set	the	rules	about	the	use	of	their	data.	With	these	advantages,	an	SOA
system	must	be	carefully	designed	to	have	good	performance	and	meet	the	user's
needs.

When	an	application	makes	a	set	of	services	in	its	API	available	over	the	web,
we	call	these	web	services.

Security	and	API	usage

It	is	quite	common	that	you	need	an	API	key	to	make	use	of	a	vendor's	API.	The
general	idea	is	that	they	want	to	know	who	is	using	their	services	and	how	much
each	user	is	using.	Perhaps	they	have	free	and	pay	tiers	of	their	services	or	have

a	 policy	 that	 limits	 the	 number	 of	 requests	 that	 a	 single	 individual	 can	make
during	a	particular	time	period.

Sometimes	 once	 you	get	 your	API	 key,	 you	 simply	 include	 the	 key	 as	 part	 of
POST	data	or	perhaps	as	a	parameter	on	the	URL	when	calling	the	API.

Other	times,	the	vendor	wants	increased	assurance	of	the	source	of	the	requests
and	so	they	expect	you	to	send	cryptographically	signed	messages	using	shared
keys	and	secrets.	A	very	common	technology	that	is	used	to	sign	requests	over
the	 Internet	 is	 called	OAuth.	 You	 can	 read	more	 about	 the	OAuth	 protocol	 at
www.oauth.net.

Thankfully	there	are	a	number	of	convenient	and	free	OAuth	libraries	so	you	can
avoid	 writing	 an	 OAuth	 implementation	 from	 scratch	 by	 reading	 the
specification.	 These	 libraries	 are	 of	 varying	 complexity	 and	 have	 varying
degrees	of	richness.	The	OAuth	web	site	has	 information	about	various	OAuth
libraries.

Glossary

API
Application	 Program	 Interface	 -	 A	 contract	 between	 applications	 that
defines	the	patterns	of	interaction	between	two	application	components.

ElementTree
A	built-in	Python	library	used	to	parse	XML	data.

JSON
JavaScript	 Object	 Notation	 -	 A	 format	 that	 allows	 for	 the	 markup	 of
structured	data	based	on	the	syntax	of	JavaScript	Objects.

SOA
Service-Oriented	 Architecture	 -	 When	 an	 application	 is	 made	 of
components	connected	across	a	network.

XML
eXtensible	 Markup	 Language	 -	 A	 format	 that	 allows	 for	 the	 markup	 of
structured	data.

Application	1:	Google	geocoding	web	service

Google	has	 an	 excellent	web	 service	 that	 allows	us	 to	make	use	of	 their	 large

http://www.oauth.net

database	of	geographic	information.	We	can	submit	a	geographical	search	string
like	 "Ann	Arbor,	MI"	 to	 their	 geocoding	API	 and	 have	Google	 return	 its	 best
guess	as	to	where	on	a	map	we	might	find	our	search	string	and	tell	us	about	the
landmarks	nearby.

The	geocoding	service	is	free	but	rate	limited	so	you	cannot	make	unlimited	use
of	the	API	in	a	commercial	application.	But	if	you	have	some	survey	data	where
an	end	user	has	entered	a	 location	 in	a	 free-format	 input	box,	you	can	use	 this
API	to	clean	up	your	data	quite	nicely.

When	 you	 are	 using	 a	 free	 API	 like	 Google's	 geocoding	 API,	 you	 need	 to	 be
respectful	 in	your	use	of	 these	resources.	If	 too	many	people	abuse	the	service,
Google	might	drop	or	significantly	curtail	its	free	service.

You	can	read	the	online	documentation	for	this	service,	but	it	is	quite	simple	and
you	 can	 even	 test	 it	 using	 a	 browser	 by	 typing	 the	 following	 URL	 into	 your
browser:

http://maps.googleapis.com/maps/api/geocode/json?
address=Ann+Arbor%2C+MI

Make	 sure	 to	 unwrap	 the	 URL	 and	 remove	 any	 spaces	 from	 the	 URL	 before
pasting	it	into	your	browser.

The	following	is	a	simple	application	to	prompt	the	user	for	a	search	string,	call
the	Google	geocoding	API,	and	extract	information	from	the	returned	JSON.

import	urllib.request,	urllib.parse,	urllib.error

import	json

import	ssl

api_key	=	False

#	If	you	have	a	Google	Places	API	key,	enter	it	here

#	api_key	=	'AIzaSy___IDByT70'

#	https://developers.google.com/maps/documentation/geocoding/intro

if	api_key	is	False:

				api_key	=	42

				serviceurl	=	'http://py4e-data.dr-chuck.net/json?'

else	:

				serviceurl	=	'https://maps.googleapis.com/maps/api/geocode/json?'

http://maps.googleapis.com/maps/api/geocode/json?address=Ann+Arbor%2C+MI

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

while	True:

				address	=	input('Enter	location:	')

				if	len(address)	<	1:	break

				parms	=	dict()

				parms['address']	=	address

				if	api_key	is	not	False:	parms['key']	=	api_key

				url	=	serviceurl	+	urllib.parse.urlencode(parms)

				print('Retrieving',	url)

				uh	=	urllib.request.urlopen(url,	context=ctx)

				data	=	uh.read().decode()

				print('Retrieved',	len(data),	'characters')

				try:

								js	=	json.loads(data)

				except:

								js	=	None

				if	not	js	or	'status'	not	in	js	or	js['status']	!=	'OK':

								print('====	Failure	To	Retrieve	====')

								print(data)

								continue

				print(json.dumps(js,	indent=4))

				lat	=	js['results'][0]['geometry']['location']['lat']

				lng	=	js['results'][0]['geometry']['location']['lng']

				print('lat',	lat,	'lng',	lng)

				location	=	js['results'][0]['formatted_address']

				print(location)

#	Code:	http://www.py4e.com/code3/geojson.py

The	program	takes	the	search	string	and	constructs	a	URL	with	the	search	string
as	a	properly	encoded	parameter	and	then	uses	urllib	 to	retrieve	the	text	from
the	Google	geocoding	API.	Unlike	a	fixed	web	page,	the	data	we	get	depends	on
the	parameters	we	send	and	the	geographical	data	stored	in	Google's	servers.

Once	we	retrieve	the	JSON	data,	we	parse	it	with	the	json	library	and	do	a	few
checks	to	make	sure	that	we	received	good	data,	then	extract	the	information	that
we	are	looking	for.

The	output	of	 the	program	 is	as	 follows	 (some	of	 the	 returned	JSON	has	been
removed):

$	python3	geojson.py	

Enter	location:	Ann	Arbor,	MI

Retrieving	http://py4e-data.dr-chuck.net/json?address=Ann+Arbor%2C+MI&key=42

Retrieved	1736	characters

{

				"results":	[

								{

												"address_components":	[

																{

																				"long_name":	"Ann	Arbor",

																				"short_name":	"Ann	Arbor",

																				"types":	[

																								"locality",

																								"political"

]

																},

																{

																				"long_name":	"Washtenaw	County",

																				"short_name":	"Washtenaw	County",

																				"types":	[

																								"administrative_area_level_2",

																								"political"

]

																},

																{

																				"long_name":	"Michigan",

																				"short_name":	"MI",

																				"types":	[

																								"administrative_area_level_1",

																								"political"

]

																},

																{

																				"long_name":	"United	States",

																				"short_name":	"US",

																				"types":	[

																								"country",

																								"political"

]

																}

],

												"formatted_address":	"Ann	Arbor,	MI,	USA",

												"geometry":	{

																"bounds":	{

																				"northeast":	{

																								"lat":	42.3239728,

																								"lng":	-83.6758069

																				},

																				"southwest":	{

																								"lat":	42.222668,

																								"lng":	-83.799572

																				}

																},

																"location":	{

																				"lat":	42.2808256,

																				"lng":	-83.7430378

																},

																"location_type":	"APPROXIMATE",

																"viewport":	{

																				"northeast":	{

																								"lat":	42.3239728,

																								"lng":	-83.6758069

																				},

																				"southwest":	{

																								"lat":	42.222668,

																								"lng":	-83.799572

																				}

																}

												},

												"place_id":	"ChIJMx9D1A2wPIgR4rXIhkb5Cds",

												"types":	[

																"locality",

																"political"

]

								}

],

				"status":	"OK"

}

lat	42.2808256	lng	-83.7430378

Ann	Arbor,	MI,	USA

Enter	location:

You	can	download	www.py4e.com/code3/geoxml.py	to	explore	the	XML	variant
of	the	Google	geocoding	API.

Exercise	 1:	 Change	 either	 geojson.py	 or	 geoxml.py	 to	 print	 out	 the	 two-
character	country	code	from	the	retrieved	data.	Add	error	checking	so	your
program	does	not	traceback	if	the	country	code	is	not	there.	Once	you	have
it	 working,	 search	 for	 "Atlantic	 Ocean"	 and	 make	 sure	 it	 can	 handle
locations	that	are	not	in	any	country.

Application	2:	Twitter

As	the	Twitter	API	became	increasingly	valuable,	Twitter	went	from	an	open	and
public	API	 to	 an	API	 that	 required	 the	 use	 of	OAuth	 signatures	 on	 each	API
request.

For	this	next	sample	program,	download	the	files	twurl.py,	hidden.py,	oauth.py,
and	 twitter1.py	 from	www.py4e.com/code	and	put	 them	all	 in	a	 folder	on	your
computer.

To	make	 use	 of	 these	 programs	 you	will	 need	 to	 have	 a	 Twitter	 account,	 and
authorize	 your	 Python	 code	 as	 an	 application,	 set	 up	 a	 key,	 secret,	 token	 and
token	secret.	You	will	edit	the	file	hidden.py	and	put	these	four	strings	into	the
appropriate	variables	in	the	file:

#	Keep	this	file	separate

#	https://apps.twitter.com/

#	Create	new	App	and	get	the	four	strings

def	oauth():

				return	{"consumer_key":	"h7Lu...Ng",

												"consumer_secret":	"dNKenAC3New...mmn7Q",

												"token_key":	"10185562-eibxCp9n2...P4GEQQOSGI",

												"token_secret":	"H0ycCFemmC4wyf1...qoIpBo"}

#	Code:	http://www.py4e.com/code3/hidden.py

The	Twitter	web	service	are	accessed	using	a	URL	like	this:

https://api.twitter.com/1.1/statuses/user_timeline.json

http://www.py4e.com/code3/geoxml.py
http://www.py4e.com/code3/geojson.py
http://www.py4e.com/code3/geoxml.py
http://www.py4e.com/code3
https://api.twitter.com/1.1/statuses/user_timeline.json

But	once	all	of	the	security	information	has	been	added,	the	URL	will	look	more
like:

https://api.twitter.com/1.1/statuses/user_timeline.json?count=2

&oauth_version=1.0&oauth_token=101...SGI&screen_name=drchuck

&oauth_nonce=09239679&oauth_timestamp=1380395644

&oauth_signature=rLK...BoD&oauth_consumer_key=h7Lu...GNg

&oauth_signature_method=HMAC-SHA1

You	 can	 read	 the	 OAuth	 specification	 if	 you	 want	 to	 know	 more	 about	 the
meaning	 of	 the	 various	 parameters	 that	 are	 added	 to	 meet	 the	 security
requirements	of	OAuth.

For	 the	 programs	we	 run	with	Twitter,	we	 hide	 all	 the	 complexity	 in	 the	 files
oauth.py	and	twurl.py.	We	simply	set	the	secrets	in	hidden.py	and	then	send	the
desired	URL	 to	 the	 twurl.augment()	 function	 and	 the	 library	 code	 adds	 all	 the
necessary	parameters	to	the	URL	for	us.

This	program	retrieves	the	timeline	for	a	particular	Twitter	user	and	returns	it	to
us	 in	 JSON	 format	 in	 a	 string.	We	 simply	print	 the	 first	 250	 characters	 of	 the
string:

import	urllib.request,	urllib.parse,	urllib.error

import	twurl

import	ssl

#	https://apps.twitter.com/

#	Create	App	and	get	the	four	strings,	put	them	in	hidden.py

TWITTER_URL	=	'https://api.twitter.com/1.1/statuses/user_timeline.json'

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

while	True:

				print('')

				acct	=	input('Enter	Twitter	Account:')

				if	(len(acct)	<	1):	break

				url	=	twurl.augment(TWITTER_URL,

																								{'screen_name':	acct,	'count':	'2'})

				print('Retrieving',	url)

				connection	=	urllib.request.urlopen(url,	context=ctx)

				data	=	connection.read().decode()

				print(data[:250])

				headers	=	dict(connection.getheaders())

				#	print	headers

				print('Remaining',	headers['x-rate-limit-remaining'])

#	Code:	http://www.py4e.com/code3/twitter1.py

When	the	program	runs	it	produces	the	following	output:

Enter	Twitter	Account:drchuck

Retrieving	https://api.twitter.com/1.1/	...

[{"created_at":"Sat	Sep	28	17:30:25	+0000	2013","

id":384007200990982144,"id_str":"384007200990982144",

"text":"RT	@fixpert:	See	how	the	Dutch	handle	traffic

intersections:	http:\/\/t.co\/tIiVWtEhj4\n#brilliant",

"source":"web","truncated":false,"in_rep

Remaining	178

Enter	Twitter	Account:fixpert

Retrieving	https://api.twitter.com/1.1/	...

[{"created_at":"Sat	Sep	28	18:03:56	+0000	2013",

"id":384015634108919808,"id_str":"384015634108919808",

"text":"3	months	after	my	freak	bocce	ball	accident,

my	wedding	ring	fits	again!	:)\n\nhttps:\/\/t.co\/2XmHPx7kgX",

"source":"web","truncated":false,

Remaining	177

Enter	Twitter	Account:

Along	with	 the	 returned	 timeline	 data,	Twitter	 also	 returns	metadata	 about	 the
request	in	the	HTTP	response	headers.	One	header	in	particular,	x-rate-limit-
remaining,	informs	us	how	many	more	requests	we	can	make	before	we	will	be
shut	off	for	a	short	time	period.	You	can	see	that	our	remaining	retrievals	drop	by
one	each	time	we	make	a	request	to	the	API.

In	the	following	example,	we	retrieve	a	user's	Twitter	friends,	parse	the	returned
JSON,	and	extract	some	of	the	information	about	the	friends.	We	also	dump	the
JSON	 after	 parsing	 and	 "pretty-print"	 it	 with	 an	 indent	 of	 four	 characters	 to
allow	us	to	pore	through	the	data	when	we	want	to	extract	more	fields.

import	urllib.request,	urllib.parse,	urllib.error

import	twurl

import	json

import	ssl

#	https://apps.twitter.com/

#	Create	App	and	get	the	four	strings,	put	them	in	hidden.py

TWITTER_URL	=	'https://api.twitter.com/1.1/friends/list.json'

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

while	True:

				print('')

				acct	=	input('Enter	Twitter	Account:')

				if	(len(acct)	<	1):	break

				url	=	twurl.augment(TWITTER_URL,

																								{'screen_name':	acct,	'count':	'5'})

				print('Retrieving',	url)

				connection	=	urllib.request.urlopen(url,	context=ctx)

				data	=	connection.read().decode()

				js	=	json.loads(data)

				print(json.dumps(js,	indent=2))

				headers	=	dict(connection.getheaders())

				print('Remaining',	headers['x-rate-limit-remaining'])

				for	u	in	js['users']:

								print(u['screen_name'])

								if	'status'	not	in	u:

												print('			*	No	status	found')

												continue

								s	=	u['status']['text']

								print('		',	s[:50])

#	Code:	http://www.py4e.com/code3/twitter2.py

Since	the	JSON	becomes	a	set	of	nested	Python	lists	and	dictionaries,	we	can	use
a	 combination	 of	 the	 index	 operation	 and	 for	 loops	 to	 wander	 through	 the
returned	data	structures	with	very	little	Python	code.

The	output	of	the	program	looks	as	follows	(some	of	the	data	items	are	shortened
to	fit	on	the	page):

Enter	Twitter	Account:drchuck

Retrieving	https://api.twitter.com/1.1/friends	...

Remaining	14

{

		"next_cursor":	1444171224491980205,

		"users":	[

				{

						"id":	662433,

						"followers_count":	28725,

						"status":	{

								"text":	"@jazzychad	I	just	bought	one	.__.",

								"created_at":	"Fri	Sep	20	08:36:34	+0000	2013",

								"retweeted":	false,

						},

						"location":	"San	Francisco,	California",

						"screen_name":	"leahculver",

						"name":	"Leah	Culver",

				},

				{

						"id":	40426722,

						"followers_count":	2635,

						"status":	{

								"text":	"RT	@WSJ:	Big	employers	like	Google	...",

								"created_at":	"Sat	Sep	28	19:36:37	+0000	2013",

						},

						"location":	"Victoria	Canada",

						"screen_name":	"_valeriei",

						"name":	"Valerie	Irvine",

				}

],

	"next_cursor_str":	"1444171224491980205"

}

leahculver

			@jazzychad	I	just	bought	one	.__.

_valeriei

			RT	@WSJ:	Big	employers	like	Google,	AT&T	are	h

ericbollens

			RT	@lukew:	sneak	peek:	my	LONG	take	on	the	good	&a

halherzog

			Learning	Objects	is	10.	We	had	a	cake	with	the	LO,

scweeker

			@DeviceLabDC	love	it!	Now	where	so	I	get	that	"etc

Enter	Twitter	Account:

The	 last	 bit	 of	 the	 output	 is	 where	we	 see	 the	 for	 loop	 reading	 the	 five	most
recent	 "friends"	of	 the	@drchuck	Twitter	 account	 and	printing	 the	most	 recent
status	for	each	friend.	There	 is	a	great	deal	more	data	available	 in	 the	returned
JSON.	If	you	look	in	the	output	of	the	program,	you	can	also	see	that	the	"find
the	friends"	of	a	particular	account	has	a	different	rate	limitation	than	the	number
of	timeline	queries	we	are	allowed	to	run	per	time	period.

These	 secure	API	 keys	 allow	Twitter	 to	 have	 solid	 confidence	 that	 they	 know
who	 is	 using	 their	API	 and	data	 and	 at	what	 level.	The	 rate-limiting	 approach
allows	us	to	do	simple,	personal	data	retrievals	but	does	not	allow	us	to	build	a
product	that	pulls	data	from	their	API	millions	of	times	per	day.

Object-oriented	programming
Managing	larger	programs

At	the	beginning	of	this	book,	we	came	up	with	four	basic	programming	patterns
which	we	use	to	construct	programs:

Sequential	code
Conditional	code	(if	statements)
Repetitive	code	(loops)
Store	and	reuse	(functions)

In	 later	 chapters,	 we	 explored	 simple	 variables	 as	 well	 as	 collection	 data
structures	like	lists,	tuples,	and	dictionaries.

As	we	build	programs,	we	design	data	structures	and	write	code	 to	manipulate
those	data	structures.	There	are	many	ways	to	write	programs	and	by	now,	you
probably	 have	 written	 some	 programs	 that	 are	 "not	 so	 elegant"	 and	 other
programs	 that	 are	 "more	 elegant".	 Even	 though	 your	 programs	may	 be	 small,
you	are	starting	to	see	how	there	is	a	bit	of	art	and	aesthetic	to	writing	code.

As	programs	get	to	be	millions	of	lines	long,	it	becomes	increasingly	important
to	write	 code	 that	 is	 easy	 to	 understand.	 If	 you	 are	working	 on	 a	million-line
program,	you	can	never	keep	the	entire	program	in	your	mind	at	the	same	time.
We	need	ways	 to	break	 large	programs	 into	multiple	smaller	pieces	so	 that	we
have	less	to	look	at	when	solving	a	problem,	fix	a	bug,	or	add	a	new	feature.

In	a	way,	object	oriented	programming	is	a	way	to	arrange	your	code	so	that	you
can	 zoom	 into	50	 lines	of	 the	 code	 and	understand	 it	while	 ignoring	 the	other
999,950	lines	of	code	for	the	moment.

Getting	started

Like	 many	 aspects	 of	 programming,	 it	 is	 necessary	 to	 learn	 the	 concepts	 of
object	 oriented	 programming	before	 you	 can	 use	 them	 effectively.	You	 should
approach	 this	 chapter	 as	 a	 way	 to	 learn	 some	 terms	 and	 concepts	 and	 work

through	a	few	simple	examples	to	lay	a	foundation	for	future	learning.

The	key	outcome	of	this	chapter	is	to	have	a	basic	understanding	of	how	objects
are	constructed	and	how	they	function	and	most	importantly	how	we	make	use
of	 the	 capabilities	 of	 objects	 that	 are	 provided	 to	 us	 by	 Python	 and	 Python
libraries.

Using	objects

As	 it	 turns	 out,	 we	 have	 been	 using	 objects	 all	 along	 in	 this	 book.	 Python
provides	us	with	many	built-in	objects.	Here	is	some	simple	code	where	the	first
few	lines	should	feel	very	simple	and	natural	to	you.

stuff	=	list()

stuff.append('python')

stuff.append('chuck')

stuff.sort()

print	(stuff[0])

print	(stuff.__getitem__(0))

print	(list.__getitem__(stuff,0))

#	Code:	http://www.py4e.com/code3/party1.py

Instead	of	 focusing	on	what	 these	 lines	accomplish,	 let's	 look	at	what	 is	 really
happening	from	the	point	of	view	of	object-oriented	programming.	Don't	worry
if	 the	 following	paragraphs	don't	make	any	 sense	 the	 first	 time	you	 read	 them
because	we	have	not	yet	defined	all	of	these	terms.

The	first	 line	constructs	an	object	of	 type	list,	 the	second	and	 third	 lines	call
the	append()	method,	the	fourth	line	calls	the	sort()	method,	and	the	fifth	line
retrieves	the	item	at	position	0.

The	sixth	line	calls	the	__getitem__()	method	in	the	stuff	list	with	a	parameter
of	zero.

print	(stuff.__getitem__(0))

The	seventh	line	is	an	even	more	verbose	way	of	retrieving	the	0th	item	in	the

list.

print	(list.__getitem__(stuff,0))

In	this	code,	we	call	the	__getitem__	method	in	the	list	class	and	pass	the	list
and	the	item	we	want	retrieved	from	the	list	as	parameters.

The	 last	 three	 lines	of	 the	program	are	equivalent,	but	 it	 is	more	convenient	 to
simply	use	the	square	bracket	syntax	to	look	up	an	item	at	a	particular	position	in
a	list.

We	can	take	a	look	at	the	capabilities	of	an	object	by	looking	at	the	output	of	the
dir()	function:

>>>	stuff	=	list()

>>>	dir(stuff)

['__add__',	'__class__',	'__contains__',	'__delattr__',

'__delitem__',	'__dir__',	'__doc__',	'__eq__',

'__format__',	'__ge__',	'__getattribute__',	'__getitem__',

'__gt__',	'__hash__',	'__iadd__',	'__imul__',	'__init__',

'__iter__',	'__le__',	'__len__',	'__lt__',	'__mul__',

'__ne__',	'__new__',	'__reduce__',	'__reduce_ex__',

'__repr__',	'__reversed__',	'__rmul__',	'__setattr__',

'__setitem__',	'__sizeof__',	'__str__',	'__subclasshook__',

'append',	'clear',	'copy',	'count',	'extend',	'index',

'insert',	'pop',	'remove',	'reverse',	'sort']

>>>

The	rest	of	this	chapter	will	define	all	of	the	above	terms	so	make	sure	to	come
back	after	you	finish	the	chapter	and	re-read	the	above	paragraphs	to	check	your
understanding.

Starting	with	programs

A	program	in	its	most	basic	form	takes	some	input,	does	some	processing,	and
produces	 some	 output.	 Our	 elevator	 conversion	 program	 demonstrates	 a	 very
short	but	complete	program	showing	all	three	of	these	steps.

usf	=	input('Enter	the	US	Floor	Number:	')

wf	=	int(usf)	-	1

print('Non-US	Floor	Number	is',wf)

#	Code:	http://www.py4e.com/code3/elev.py

If	we	think	a	bit	more	about	 this	program,	 there	 is	 the	"outside	world"	and	the
program.	The	input	and	output	aspects	are	where	the	program	interacts	with	the
outside	world.	Within	the	program	we	have	code	and	data	to	accomplish	the	task
the	program	is	designed	to	solve.

Program

OutputInput

A	Program

One	 way	 to	 think	 about	 object-oriented	 programming	 is	 that	 it	 separates	 our
program	into	multiple	"zones."	Each	zone	contains	some	code	and	data	 (like	a
program)	and	has	well	defined	interactions	with	the	outside	world	and	the	other
zones	within	the	program.

If	 we	 look	 back	 at	 the	 link	 extraction	 application	 where	 we	 used	 the
BeautifulSoup	 library,	we	can	 see	 a	program	 that	 is	 constructed	by	connecting
different	objects	together	to	accomplish	a	task:

#	To	run	this,	download	the	BeautifulSoup	zip	file

#	http://www.py4e.com/code3/bs4.zip

#	and	unzip	it	in	the	same	directory	as	this	file

import	urllib.request,	urllib.parse,	urllib.error

from	bs4	import	BeautifulSoup

import	ssl

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

url	=	input('Enter	-	')

html	=	urllib.request.urlopen(url,	context=ctx).read()

soup	=	BeautifulSoup(html,	'html.parser')

#	Retrieve	all	of	the	anchor	tags

tags	=	soup('a')

for	tag	in	tags:

				print(tag.get('href',	None))

#	Code:	http://www.py4e.com/code3/urllinks.py

We	read	the	URL	into	a	string	and	then	pass	that	into	urllib	to	retrieve	the	data
from	 the	web.	 The	 urllib	 library	 uses	 the	 socket	 library	 to	make	 the	 actual
network	connection	 to	 retrieve	 the	data.	We	take	 the	string	 that	urllib	 returns
and	hand	it	to	BeautifulSoup	for	parsing.	BeautifulSoup	makes	use	of	the	object
html.parser

1	and	returns	an	object.	We	call	the	tags()	method	on	the	returned
object	that	returns	a	dictionary	of	tag	objects.	We	loop	through	the	tags	and	call
the	get()	method	for	each	tag	to	print	out	the	href	attribute.

We	can	draw	a	picture	of	this	program	and	how	the	objects	work	together.

String	
Object OutputInput

Dictionary	
Object

BeautifulSoup	
Object

String	
Object

Socket	
Object

Urllib	Object

html.parser	
Object

A	Program	as	Network	of	Objects

The	key	here	is	not	 to	understand	perfectly	how	this	program	works	but	 to	see
how	we	build	a	network	of	interacting	objects	and	orchestrate	the	movement	of
information	between	the	objects	to	create	a	program.	It	is	also	important	to	note
that	 when	 you	 looked	 at	 that	 program	 several	 chapters	 back,	 you	 could	 fully
understand	what	was	 going	 on	 in	 the	 program	without	 even	 realizing	 that	 the
program	was	"orchestrating	the	movement	of	data	between	objects."	It	was	just
lines	of	code	that	got	the	job	done.

Subdividing	a	problem

One	 of	 the	 advantages	 of	 the	 object-oriented	 approach	 is	 that	 it	 can	 hide
complexity.	 For	 example,	while	we	 need	 to	 know	 how	 to	 use	 the	 urllib	and
BeautifulSoup	code,	we	do	not	need	to	know	how	those	libraries	work	internally.

This	allows	us	to	focus	on	the	part	of	the	problem	we	need	to	solve	and	ignore
the	other	parts	of	the	program.

BeautifulSoup	
Object

String	
Object OutputInput

Dictionary	
Object

String	
Object

Socket	
Object

Urllib	Object

html.parser	
Object

Ignoring	Detail	When	Using	an	Object

This	ability	to	focus	exclusively	on	the	part	of	a	program	that	we	care	about	and
ignore	 the	 rest	 is	also	helpful	 to	 the	developers	of	 the	objects	 that	we	use.	For
example,	 the	 programmers	 developing	 BeautifulSoup	 do	 not	 need	 to	 know	 or
care	about	how	we	retrieve	our	HTML	page,	what	parts	we	want	to	read,	or	what
we	plan	to	do	with	the	data	we	extract	from	the	web	page.

String	
Object OutputInput Dictionary	

Object
String	
Object

Socket	
Object

Urllib	Object

html.parser	
Object

BeautifulSoup	
Object

Ignoring	Detail	When	Building	an	Object

Our	first	Python	object

At	 a	 basic	 level,	 an	 object	 is	 simply	 some	 code	 plus	 data	 structures	 that	 are
smaller	 than	 a	whole	 program.	Defining	 a	 function	 allows	 us	 to	 store	 a	 bit	 of
code	and	give	 it	a	name	and	 then	 later	 invoke	 that	code	using	 the	name	of	 the
function.

An	object	can	contain	a	number	of	functions	(which	we	call	methods)	as	well	as
data	that	is	used	by	those	functions.	We	call	data	items	that	are	part	of	the	object
attributes.

We	use	the	class	keyword	to	define	the	data	and	code	that	will	make	up	each	of
the	 objects.	 The	 class	 keyword	 includes	 the	 name	 of	 the	 class	 and	 begins	 an

indented	 block	 of	 code	 where	 we	 include	 the	 attributes	 (data)	 and	 methods
(code).

class	PartyAnimal:

			x	=	0

			def	party(self)	:

					self.x	=	self.x	+	1

					print("So	far",self.x)

an	=	PartyAnimal()

an.party()

an.party()

an.party()

PartyAnimal.party(an)

#	Code:	http://www.py4e.com/code3/party2.py

Each	method	looks	like	a	function,	starting	with	the	def	keyword	and	consisting
of	an	indented	block	of	code.	This	object	has	one	attribute	(x)	and	one	method
(party).	The	methods	have	a	special	first	parameter	that	we	name	by	convention
self.

Just	as	the	def	keyword	does	not	cause	function	code	to	be	executed,	the	class
keyword	 does	 not	 create	 an	 object.	 Instead,	 the	 class	 keyword	 defines	 a
template	indicating	what	data	and	code	will	be	contained	in	each	object	of	type
PartyAnimal.	The	class	is	like	a	cookie	cutter	and	the	objects	created	using	the
class	 are	 the	 cookies2.	 You	 don't	 put	 frosting	 on	 the	 cookie	 cutter;	 you	 put
frosting	on	the	cookies,	and	you	can	put	different	frosting	on	each	cookie.

A	Class	and	Two	Objects

If	we	continue	through	this	sample	program,	we	see	the	first	executable	line	of
code:

an	=	PartyAnimal()

This	is	where	we	instruct	Python	to	construct	(i.e.,	create)	an	object	or	instance
of	the	class	PartyAnimal.	It	looks	like	a	function	call	to	the	class	itself.	Python
constructs	 the	 object	 with	 the	 right	 data	 and	 methods	 and	 returns	 the	 object
which	 is	 then	 assigned	 to	 the	variable	an.	 In	 a	way	 this	 is	 quite	 similar	 to	 the
following	line	which	we	have	been	using	all	along:

counts	=	dict()

Here	we	instruct	Python	to	construct	an	object	using	the	dict	template	(already
present	in	Python),	return	the	instance	of	dictionary,	and	assign	it	to	the	variable
counts.

When	 the	PartyAnimal	 class	 is	 used	 to	 construct	 an	 object,	 the	 variable	an	 is
used	 to	 point	 to	 that	 object.	 We	 use	 an	 to	 access	 the	 code	 and	 data	 for	 that
particular	instance	of	the	PartyAnimal	class.

Each	 Partyanimal	 object/instance	 contains	 within	 it	 a	 variable	 x	 and	 a
method/function	named	party.	We	call	the	party	method	in	this	line:

an.party()

When	 the	 party	 method	 is	 called,	 the	 first	 parameter	 (which	 we	 call	 by
convention	self)	points	to	the	particular	instance	of	the	PartyAnimal	object	that
party	is	called	from.	Within	the	party	method,	we	see	the	line:

self.x	=	self.x	+	1

This	 syntax	 using	 the	 dot	 operator	 is	 saying	 'the	 x	 within	 self.'	 Each	 time
party()	 is	 called,	 the	 internal	 x	 value	 is	 incremented	 by	 1	 and	 the	 value	 is
printed	out.

The	following	line	is	another	way	to	call	the	party	method	within	the	an	object:

PartyAnimal.party(an)

In	this	variation,	we	access	the	code	from	within	the	class	and	explicitly	pass	the
object	pointer	an	as	 the	first	parameter	 (i.e.,	self	within	 the	method).	You	can
think	of	an.party()	as	shorthand	for	the	above	line.

When	the	program	executes,	it	produces	the	following	output:

So	far	1

So	far	2

So	far	3

So	far	4

The	 object	 is	 constructed,	 and	 the	 party	 method	 is	 called	 four	 times,	 both
incrementing	and	printing	the	value	for	x	within	the	an	object.

Classes	as	types

As	we	have	seen,	in	Python	all	variables	have	a	type.	We	can	use	the	built-in	dir
function	to	examine	the	capabilities	of	a	variable.	We	can	also	use	type	and	dir
with	the	classes	that	we	create.

class	PartyAnimal:

			x	=	0

			def	party(self)	:

					self.x	=	self.x	+	1

					print("So	far",self.x)

an	=	PartyAnimal()

print	("Type",	type(an))

print	("Dir	",	dir(an))

print	("Type",	type(an.x))

print	("Type",	type(an.party))

#	Code:	http://www.py4e.com/code3/party3.py

When	this	program	executes,	it	produces	the	following	output:

Type	<class	'__main__.PartyAnimal'>

Dir		['__class__',	'__delattr__',	...

'__sizeof__',	'__str__',	'__subclasshook__',

'__weakref__',	'party',	'x']

Type	<class	'int'>

Type	<class	'method'>

You	can	see	that	using	the	class	keyword,	we	have	created	a	new	type.	From	the
dir	 output,	 you	 can	 see	both	 the	x	 integer	 attribute	 and	 the	party	method	 are
available	in	the	object.

Object	lifecycle

In	the	previous	examples,	we	define	a	class	(template),	use	that	class	to	create	an
instance	 of	 that	 class	 (object),	 and	 then	 use	 the	 instance.	 When	 the	 program
finishes,	all	of	 the	variables	are	discarded.	Usually,	we	don't	 think	much	about
the	creation	and	destruction	of	variables,	but	often	as	our	objects	become	more
complex,	we	need	to	 take	some	action	within	 the	object	 to	set	 things	up	as	 the
object	is	constructed	and	possibly	clean	things	up	as	the	object	is	discarded.

If	 we	 want	 our	 object	 to	 be	 aware	 of	 these	 moments	 of	 construction	 and
destruction,	we	add	specially	named	methods	to	our	object:

class	PartyAnimal:

			x	=	0

			def	__init__(self):

					print('I	am	constructed')

			def	party(self)	:

					self.x	=	self.x	+	1

					print('So	far',self.x)

			def	__del__(self):

					print('I	am	destructed',	self.x)

an	=	PartyAnimal()

an.party()

an.party()

an	=	42

print('an	contains',an)

#	Code:	http://www.py4e.com/code3/party4.py

When	this	program	executes,	it	produces	the	following	output:

I	am	constructed

So	far	1

So	far	2

I	am	destructed	2

an	contains	42

As	 Python	 constructs	 our	 object,	 it	 calls	 our	 __init__	 method	 to	 give	 us	 a
chance	 to	 set	 up	 some	 default	 or	 initial	 values	 for	 the	 object.	 When	 Python
encounters	the	line:

an	=	42

It	actually	"throws	our	object	away"	so	it	can	reuse	the	an	variable	to	store	the
value	 42.	 Just	 at	 the	 moment	 when	 our	 an	 object	 is	 being	 "destroyed"	 our
destructor	 code	 (__del__)	 is	 called.	 We	 cannot	 stop	 our	 variable	 from	 being
destroyed,	but	we	can	do	any	necessary	cleanup	right	before	our	object	no	longer
exists.

When	developing	objects,	it	is	quite	common	to	add	a	constructor	to	an	object	to
set	up	initial	values	for	the	object.	It	is	relatively	rare	to	need	a	destructor	for	an
object.

Multiple	instances

So	far,	we	have	defined	a	class,	constructed	a	single	object,	used	that	object,	and
then	 thrown	 the	 object	 away.	 However,	 the	 real	 power	 in	 object-oriented
programming	happens	when	we	construct	multiple	instances	of	our	class.

When	we	 construct	multiple	 objects	 from	 our	 class,	 we	might	 want	 to	 set	 up
different	 initial	 values	 for	 each	 of	 the	 objects.	 We	 can	 pass	 data	 to	 the
constructors	to	give	each	object	a	different	initial	value:

class	PartyAnimal:

			x	=	0

			name	=	''

			def	__init__(self,	nam):

					self.name	=	nam

					print(self.name,'constructed')

			def	party(self)	:

					self.x	=	self.x	+	1

					print(self.name,'party	count',self.x)

s	=	PartyAnimal('Sally')

j	=	PartyAnimal('Jim')

s.party()

j.party()

s.party()

#	Code:	http://www.py4e.com/code3/party5.py

The	constructor	has	both	a	self	parameter	that	points	to	the	object	instance	and
additional	 parameters	 that	 are	 passed	 into	 the	 constructor	 as	 the	 object	 is
constructed:

s	=	PartyAnimal('Sally')

Within	the	constructor,	the	second	line	copies	the	parameter	(nam)	that	is	passed
into	the	name	attribute	within	the	object	instance.

self.name	=	nam

The	output	of	the	program	shows	that	each	of	the	objects	(s	and	j)	contain	their
own	independent	copies	of	x	and	nam:

Sally	constructed

Jim	constructed

Sally	party	count	1

Jim	party	count	1

Sally	party	count	2

Inheritance

Another	powerful	feature	of	object-oriented	programming	is	the	ability	to	create
a	new	class	by	extending	an	existing	class.	When	extending	a	class,	we	call	the
original	class	the	parent	class	and	the	new	class	the	child	class.

For	 this	 example,	we	move	our	PartyAnimal	 class	 into	 its	 own	 file.	Then,	we
can	'import'	the	PartyAnimal	class	in	a	new	file	and	extend	it,	as	follows:

from	party	import	PartyAnimal

class	CricketFan(PartyAnimal):

			points	=	0

			def	six(self):

						self.points	=	self.points	+	6

						self.party()

						print(self.name,"points",self.points)

s	=	PartyAnimal("Sally")

s.party()

j	=	CricketFan("Jim")

j.party()

j.six()

print(dir(j))

#	Code:	http://www.py4e.com/code3/party6.py

When	we	 define	 the	 CricketFan	 class,	 we	 indicate	 that	 we	 are	 extending	 the
PartyAnimal	class.	This	means	that	all	of	the	variables	(x)	and	methods	(party)
from	the	PartyAnimal	class	are	inherited	by	the	CricketFan	class.	For	example,
within	the	six	method	in	the	CricketFan	class,	we	call	the	party	method	from
the	PartyAnimal	class.

As	 the	 program	 executes,	 we	 create	 s	 and	 j	 as	 independent	 instances	 of
PartyAnimal	 and	CricketFan.	The	j	 object	 has	 additional	 capabilities	 beyond
the	s	object.

Sally	constructed

Sally	party	count	1

Jim	constructed

Jim	party	count	1

Jim	party	count	2

Jim	points	6

['__class__',	'__delattr__',	...	'__weakref__',

'name',	'party',	'points',	'six',	'x']

In	the	dir	output	for	the	j	object	(instance	of	the	CricketFan	class),	we	see	that
it	has	the	attributes	and	methods	of	the	parent	class,	as	well	as	the	attributes	and

methods	that	were	added	when	the	class	was	extended	to	create	the	CricketFan
class.

Summary

This	 is	 a	 very	 quick	 introduction	 to	 object-oriented	 programming	 that	 focuses
mainly	 on	 terminology	 and	 the	 syntax	 of	 defining	 and	 using	 objects.	 Let's
quickly	review	the	code	that	we	looked	at	in	the	beginning	of	the	chapter.	At	this
point	you	should	fully	understand	what	is	going	on.

stuff	=	list()

stuff.append('python')

stuff.append('chuck')

stuff.sort()

print	(stuff[0])

print	(stuff.__getitem__(0))

print	(list.__getitem__(stuff,0))

#	Code:	http://www.py4e.com/code3/party1.py

The	first	line	constructs	a	list	object.	When	Python	creates	the	list	object,	it
calls	 the	 constructor	 method	 (named	 __init__)	 to	 set	 up	 the	 internal	 data
attributes	 that	 will	 be	 used	 to	 store	 the	 list	 data.	 We	 have	 not	 passed	 any
parameters	to	the	constructor.	When	the	constructor	returns,	we	use	the	variable
stuff	to	point	to	the	returned	instance	of	the	list	class.

The	second	and	third	lines	call	the	append	method	with	one	parameter	to	add	a
new	item	at	the	end	of	the	list	by	updating	the	attributes	within	stuff.	Then	in
the	 fourth	 line,	 we	 call	 the	 sort	 method	 with	 no	 parameters	 to	 sort	 the	 data
within	the	stuff	object.

We	then	print	out	the	first	item	in	the	list	using	the	square	brackets	which	are	a
shortcut	to	calling	the	__getitem__	method	within	the	stuff.	This	is	equivalent
to	 calling	 the	 __getitem__	 method	 in	 the	 list	 class	 and	 passing	 the	 stuff
object	as	 the	 first	parameter	and	 the	position	we	are	 looking	 for	as	 the	 second
parameter.

At	the	end	of	the	program,	the	stuff	object	 is	discarded	but	not	before	calling
the	destructor	(named	__del__)	so	that	the	object	can	clean	up	any	loose	ends	as

necessary.

Those	are	the	basics	of	object-oriented	programming.	There	are	many	additional
details	as	to	how	to	best	use	object-oriented	approaches	when	developing	large
applications	and	libraries	that	are	beyond	the	scope	of	this	chapter.3

Glossary

attribute
A	variable	that	is	part	of	a	class.

class
A	 template	 that	 can	 be	 used	 to	 construct	 an	 object.	Defines	 the	 attributes
and	methods	that	will	make	up	the	object.

child	class
A	new	class	created	when	a	parent	class	is	extended.	The	child	class	inherits
all	of	the	attributes	and	methods	of	the	parent	class.

constructor
An	 optional	 specially	 named	 method	 (__init__)	 that	 is	 called	 at	 the
moment	when	a	class	 is	being	used	 to	construct	an	object.	Usually	 this	 is
used	to	set	up	initial	values	for	the	object.

destructor
An	optional	specially	named	method	(__del__)	that	is	called	at	the	moment
just	before	an	object	is	destroyed.	Destructors	are	rarely	used.

inheritance
When	we	create	a	new	class	(child)	by	extending	an	existing	class	(parent).
The	child	class	has	all	 the	attributes	and	methods	of	 the	parent	class	plus
additional	attributes	and	methods	defined	by	the	child	class.

method
A	 function	 that	 is	 contained	 within	 a	 class	 and	 the	 objects	 that	 are
constructed	 from	 the	 class.	 Some	 object-oriented	 patterns	 use	 'message'
instead	of	'method'	to	describe	this	concept.

object
A	constructed	instance	of	a	class.	An	object	contains	all	of	the	attributes	and
methods	 that	 were	 defined	 by	 the	 class.	 Some	 object-oriented
documentation	uses	the	term	'instance'	interchangeably	with	'object'.

parent	class
The	class	which	 is	being	extended	to	create	a	new	child	class.	The	parent
class	contributes	all	of	its	methods	and	attributes	to	the	new	child	class.

1.	 https://docs.python.org/3/library/html.parser.html↩

2.	 Cookie	 image	 copyright	 CC-BY
https://www.flickr.com/photos/dinnerseries/23570475099↩

3.	 If	 you	 are	 curious	 about	 where	 the	 list	 class	 is	 defined,	 take	 a	 look	 at
(hopefully	 the	 URL	 won't	 change)
https://github.com/python/cpython/blob/master/Objects/listobject.c	-	the	list
class	 is	written	 in	a	 language	called	"C".	 If	you	 take	a	 look	at	 that	source
code	and	find	it	curious	you	might	want	to	explore	a	few	Computer	Science
courses.↩

Using	Databases	and	SQL
What	is	a	database?

A	 database	 is	 a	 file	 that	 is	 organized	 for	 storing	 data.	 Most	 databases	 are
organized	like	a	dictionary	in	the	sense	that	they	map	from	keys	to	values.	The
biggest	difference	is	that	the	database	is	on	disk	(or	other	permanent	storage),	so
it	 persists	 after	 the	 program	 ends.	 Because	 a	 database	 is	 stored	 on	 permanent
storage,	it	can	store	far	more	data	than	a	dictionary,	which	is	limited	to	the	size
of	the	memory	in	the	computer.

Like	 a	 dictionary,	 database	 software	 is	 designed	 to	 keep	 the	 inserting	 and
accessing	of	data	very	 fast,	 even	 for	 large	amounts	of	data.	Database	 software
maintains	its	performance	by	building	indexes	as	data	is	added	to	the	database	to
allow	the	computer	to	jump	quickly	to	a	particular	entry.

There	are	many	different	database	systems	which	are	used	for	a	wide	variety	of
purposes	 including:	 Oracle,	MySQL,	Microsoft	 SQL	 Server,	 PostgreSQL,	 and
SQLite.	We	focus	on	SQLite	in	this	book	because	it	is	a	very	common	database
and	is	already	built	 into	Python.	SQLite	 is	designed	to	be	embedded	 into	other
applications	to	provide	database	support	within	the	application.	For	example,	the
Firefox	 browser	 also	 uses	 the	 SQLite	 database	 internally	 as	 do	 many	 other
products.

http://sqlite.org/

SQLite	is	well	suited	to	some	of	the	data	manipulation	problems	that	we	see	in
Informatics	 such	 as	 the	 Twitter	 spidering	 application	 that	 we	 describe	 in	 this
chapter.

Database	concepts

When	 you	 first	 look	 at	 a	 database	 it	 looks	 like	 a	 spreadsheet	 with	 multiple
sheets.	The	primary	data	structures	in	a	database	are:	tables,	rows,	and	columns.

http://sqlite.org/

2.3

Table

row

column

2.3

Relation

tuple

attribute

Relational	Databases

In	 technical	descriptions	of	 relational	databases	 the	concepts	of	 table,	 row,	and
column	 are	 more	 formally	 referred	 to	 as	 relation,	 tuple,	 and	 attribute,
respectively.	We	will	use	the	less	formal	terms	in	this	chapter.

Database	Browser	for	SQLite

While	 this	 chapter	 will	 focus	 on	 using	 Python	 to	 work	 with	 data	 in	 SQLite
database	 files,	many	operations	can	be	done	more	conveniently	using	software
called	the	Database	Browser	for	SQLite	which	is	freely	available	from:

http://sqlitebrowser.org/

Using	 the	 browser	 you	 can	 easily	 create	 tables,	 insert	 data,	 edit	 data,	 or	 run
simple	SQL	queries	on	the	data	in	the	database.

In	 a	 sense,	 the	database	browser	 is	 similar	 to	 a	 text	 editor	when	working	with
text	files.	When	you	want	to	do	one	or	very	few	operations	on	a	text	file,	you	can
just	 open	 it	 in	 a	 text	 editor	 and	make	 the	 changes	 you	want.	When	 you	 have
many	changes	 that	you	need	 to	do	 to	a	 text	 file,	often	you	will	write	a	 simple
Python	program.	You	will	 find	 the	same	pattern	when	working	with	databases.
You	 will	 do	 simple	 operations	 in	 the	 database	 manager	 and	 more	 complex
operations	will	be	most	conveniently	done	in	Python.

Creating	a	database	table

Databases	require	more	defined	structure	than	Python	lists	or	dictionaries1.

When	we	create	a	database	table	we	must	tell	the	database	in	advance	the	names

http://sqlitebrowser.org/

of	each	of	the	columns	in	the	table	and	the	type	of	data	which	we	are	planning	to
store	in	each	column.	When	the	database	software	knows	the	type	of	data	in	each
column,	it	can	choose	the	most	efficient	way	to	store	and	look	up	the	data	based
on	the	type	of	data.

You	can	look	at	the	various	data	types	supported	by	SQLite	at	the	following	url:

http://www.sqlite.org/datatypes.html

Defining	 structure	 for	 your	 data	 up	 front	 may	 seem	 inconvenient	 at	 the
beginning,	 but	 the	 payoff	 is	 fast	 access	 to	 your	 data	 even	 when	 the	 database
contains	a	large	amount	of	data.

The	code	to	create	a	database	file	and	a	table	named	Tracks	with	two	columns	in
the	database	is	as	follows:

import	sqlite3

conn	=	sqlite3.connect('music.sqlite')

cur	=	conn.cursor()

cur.execute('DROP	TABLE	IF	EXISTS	Tracks')

cur.execute('CREATE	TABLE	Tracks	(title	TEXT,	plays	INTEGER)')

conn.close()

#	Code:	http://www.py4e.com/code3/db1.py

The	connect	 operation	makes	 a	 "connection"	 to	 the	database	 stored	 in	 the	 file
music.sqlite	 in	 the	 current	 directory.	 If	 the	 file	 does	 not	 exist,	 it	 will	 be
created.	The	reason	this	is	called	a	"connection"	is	that	sometimes	the	database	is
stored	on	a	separate	"database	server"	from	the	server	on	which	we	are	running
our	application.	In	our	simple	examples	the	database	will	 just	be	a	local	file	 in
the	same	directory	as	the	Python	code	we	are	running.

A	cursor	is	like	a	file	handle	that	we	can	use	to	perform	operations	on	the	data
stored	in	the	database.	Calling	cursor()	 is	very	similar	conceptually	 to	calling
open()	when	dealing	with	text	files.

http://www.sqlite.org/datatypes.html

Your
Program

C
U
R
S
O
R

execute
fetchone
fetchall
close

Users

Members

Courses

A	Database	Cursor

Once	we	have	the	cursor,	we	can	begin	to	execute	commands	on	the	contents	of
the	database	using	the	execute()	method.

Database	 commands	 are	 expressed	 in	 a	 special	 language	 that	 has	 been
standardized	across	many	different	database	vendors	to	allow	us	to	learn	a	single
database	language.	The	database	language	is	called	Structured	Query	Language
or	SQL	for	short.

http://en.wikipedia.org/wiki/SQL

In	 our	 example,	 we	 are	 executing	 two	 SQL	 commands	 in	 our	 database.	 As	 a
convention,	we	will	show	the	SQL	keywords	 in	uppercase	and	 the	parts	of	 the
command	 that	 we	 are	 adding	 (such	 as	 the	 table	 and	 column	 names)	 will	 be
shown	in	lowercase.

The	first	SQL	command	removes	the	Tracks	table	from	the	database	if	it	exists.
This	pattern	is	simply	to	allow	us	to	run	the	same	program	to	create	the	Tracks
table	 over	 and	 over	 again	without	 causing	 an	 error.	Note	 that	 the	DROP	TABLE
command	deletes	the	table	and	all	of	its	contents	from	the	database	(i.e.,	there	is
no	"undo").

cur.execute('DROP	TABLE	IF	EXISTS	Tracks	')

The	second	command	creates	a	 table	named	Tracks	with	a	 text	column	named
title	and	an	integer	column	named	plays.

cur.execute('CREATE	TABLE	Tracks	(title	TEXT,	plays	INTEGER)')

http://en.wikipedia.org/wiki/SQL

Now	that	we	have	created	a	table	named	Tracks,	we	can	put	some	data	into	that
table	using	the	SQL	INSERT	operation.	Again,	we	begin	by	making	a	connection
to	the	database	and	obtaining	the	cursor.	We	can	then	execute	SQL	commands
using	the	cursor.

The	SQL	INSERT	command	indicates	which	table	we	are	using	and	then	defines	a
new	row	by	listing	 the	fields	we	want	 to	 include	(title,	plays)	 followed	by
the	VALUES	we	want	placed	 in	 the	new	row.	We	specify	 the	values	as	question
marks	(?,	?)	 to	 indicate	 that	 the	actual	values	are	passed	 in	as	a	 tuple	('My
Way',	15)	as	the	second	parameter	to	the	execute()	call.

import	sqlite3

conn	=	sqlite3.connect('music.sqlite')

cur	=	conn.cursor()

cur.execute('INSERT	INTO	Tracks	(title,	plays)	VALUES	(?,	?)',

				('Thunderstruck',	20))

cur.execute('INSERT	INTO	Tracks	(title,	plays)	VALUES	(?,	?)',

				('My	Way',	15))

conn.commit()

print('Tracks:')

cur.execute('SELECT	title,	plays	FROM	Tracks')

for	row	in	cur:

					print(row)

cur.execute('DELETE	FROM	Tracks	WHERE	plays	<	100')

conn.commit()

cur.close()

#	Code:	http://www.py4e.com/code3/db2.py

First	we	INSERT	two	rows	into	our	table	and	use	commit()	to	force	the	data	to	be
written	to	the	database	file.

title plays

My	Way
Thunderstruck

15
20

Tracks

Rows	in	a	Table

Then	we	use	the	SELECT	command	to	retrieve	the	rows	we	just	inserted	from	the
table.	 On	 the	 SELECT	 command,	 we	 indicate	 which	 columns	 we	 would	 like
(title,	 plays)	 and	 indicate	 which	 table	 we	 want	 to	 retrieve	 the	 data	 from.
After	 we	 execute	 the	 SELECT	 statement,	 the	 cursor	 is	 something	 we	 can	 loop
through	in	a	for	statement.	For	efficiency,	the	cursor	does	not	read	all	of	the	data
from	 the	 database	when	we	 execute	 the	SELECT	 statement.	 Instead,	 the	 data	 is
read	on	demand	as	we	loop	through	the	rows	in	the	for	statement.

The	output	of	the	program	is	as	follows:

Tracks:

('Thunderstruck',	20)

('My	Way',	15)

Our	for	loop	finds	two	rows,	and	each	row	is	a	Python	tuple	with	the	first	value
as	the	title	and	the	second	value	as	the	number	of	plays.

Note:	You	may	see	strings	starting	with	u'	in	other	books	or	on	the	Internet.	This
was	 an	 indication	 in	 Python	 2	 that	 the	 strings	 are	Unicode*	 strings	 that	 are
capable	of	storing	non-Latin	character	sets.	In	Python	3,	all	strings	are	unicode
strings	by	default.*

At	 the	 very	 end	 of	 the	 program,	we	 execute	 an	 SQL	 command	 to	DELETE	 the
rows	we	have	just	created	so	we	can	run	the	program	over	and	over.	The	DELETE
command	shows	the	use	of	a	WHERE	clause	that	allows	us	to	express	a	selection
criterion	so	that	we	can	ask	the	database	to	apply	the	command	to	only	the	rows
that	match	the	criterion.	In	this	example	the	criterion	happens	to	apply	to	all	the
rows	so	we	empty	the	table	out	so	we	can	run	the	program	repeatedly.	After	the
DELETE	is	performed,	we	also	call	commit()	to	force	the	data	to	be	removed	from
the	database.

Structured	Query	Language	summary

So	 far,	 we	 have	 been	 using	 the	 Structured	 Query	 Language	 in	 our	 Python
examples	and	have	covered	many	of	 the	basics	of	 the	SQL	commands.	 In	 this
section,	we	look	at	the	SQL	language	in	particular	and	give	an	overview	of	SQL
syntax.

Since	 there	 are	 so	 many	 different	 database	 vendors,	 the	 Structured	 Query
Language	 (SQL)	 was	 standardized	 so	 we	 could	 communicate	 in	 a	 portable
manner	to	database	systems	from	multiple	vendors.

A	 relational	 database	 is	 made	 up	 of	 tables,	 rows,	 and	 columns.	 The	 columns
generally	have	a	type	such	as	text,	numeric,	or	date	data.	When	we	create	a	table,
we	indicate	the	names	and	types	of	the	columns:

CREATE	TABLE	Tracks	(title	TEXT,	plays	INTEGER)

To	insert	a	row	into	a	table,	we	use	the	SQL	INSERT	command:

INSERT	INTO	Tracks	(title,	plays)	VALUES	('My	Way',	15)

The	INSERT	statement	specifies	the	table	name,	then	a	list	of	the	fields/columns
that	you	would	like	to	set	in	the	new	row,	and	then	the	keyword	VALUES	and	a	list
of	corresponding	values	for	each	of	the	fields.

The	 SQL	 SELECT	 command	 is	 used	 to	 retrieve	 rows	 and	 columns	 from	 a
database.	The	SELECT	statement	lets	you	specify	which	columns	you	would	like
to	retrieve	as	well	as	a	WHERE	clause	to	select	which	rows	you	would	like	to	see.
It	also	allows	an	optional	ORDER	BY	clause	to	control	the	sorting	of	the	returned
rows.

SELECT	*	FROM	Tracks	WHERE	title	=	'My	Way'

Using	*	indicates	that	you	want	the	database	to	return	all	of	the	columns	for	each
row	that	matches	the	WHERE	clause.

Note,	 unlike	 in	 Python,	 in	 a	 SQL	 WHERE	 clause	we	 use	 a	 single	 equal	 sign	 to
indicate	 a	 test	 for	 equality	 rather	 than	 a	 double	 equal	 sign.	 Other	 logical
operations	allowed	in	a	WHERE	clause	include	<,	>,	<=,	>=,	!=,	as	well	as	AND	and
OR	and	parentheses	to	build	your	logical	expressions.

You	can	request	that	the	returned	rows	be	sorted	by	one	of	the	fields	as	follows:

SELECT	title,plays	FROM	Tracks	ORDER	BY	title

To	 remove	a	 row,	you	need	 a	WHERE	 clause	on	an	SQL	DELETE	 statement.	The
WHERE	clause	determines	which	rows	are	to	be	deleted:

DELETE	FROM	Tracks	WHERE	title	=	'My	Way'

It	is	possible	to	UPDATE	a	column	or	columns	within	one	or	more	rows	in	a	table
using	the	SQL	UPDATE	statement	as	follows:

UPDATE	Tracks	SET	plays	=	16	WHERE	title	=	'My	Way'

The	 UPDATE	 statement	 specifies	 a	 table	 and	 then	 a	 list	 of	 fields	 and	 values	 to
change	 after	 the	SET	 keyword	 and	 then	 an	 optional	WHERE	 clause	 to	 select	 the
rows	 that	 are	 to	 be	 updated.	A	 single	UPDATE	 statement	will	 change	 all	 of	 the
rows	that	match	the	WHERE	clause.	If	a	WHERE	clause	is	not	specified,	it	performs
the	UPDATE	on	all	of	the	rows	in	the	table.

These	four	basic	SQL	commands	(INSERT,	SELECT,	UPDATE,	and	DELETE)
allow	the	four	basic	operations	needed	to	create	and	maintain	data.

Spidering	Twitter	using	a	database

In	 this	 section,	we	will	create	a	 simple	spidering	program	 that	will	go	 through
Twitter	 accounts	 and	 build	 a	 database	 of	 them.	 Note:	 Be	 very	 careful	 when
running	this	program.	You	do	not	want	to	pull	too	much	data	or	run	the	program
for	too	long	and	end	up	having	your	Twitter	access	shut	off.

One	of	the	problems	of	any	kind	of	spidering	program	is	that	it	needs	to	be	able

to	be	stopped	and	restarted	many	times	and	you	do	not	want	to	lose	the	data	that
you	have	retrieved	so	far.	You	don't	want	to	always	restart	your	data	retrieval	at
the	very	beginning	so	we	want	to	store	data	as	we	retrieve	it	so	our	program	can
start	back	up	and	pick	up	where	it	left	off.

We	will	start	by	retrieving	one	person's	Twitter	friends	and	their	statuses,	looping
through	 the	 list	 of	 friends,	 and	 adding	 each	 of	 the	 friends	 to	 a	 database	 to	 be
retrieved	in	the	future.	After	we	process	one	person's	Twitter	friends,	we	check
in	our	database	and	retrieve	one	of	the	friends	of	the	friend.	We	do	this	over	and
over,	 picking	 an	 "unvisited"	 person,	 retrieving	 their	 friend	 list,	 and	 adding
friends	we	have	not	seen	to	our	list	for	a	future	visit.

We	also	track	how	many	times	we	have	seen	a	particular	friend	in	the	database	to
get	some	sense	of	their	"popularity".

By	storing	our	list	of	known	accounts	and	whether	we	have	retrieved	the	account
or	not,	and	how	popular	the	account	is	in	a	database	on	the	disk	of	the	computer,
we	can	stop	and	restart	our	program	as	many	times	as	we	like.

This	program	is	a	bit	complex.	It	is	based	on	the	code	from	the	exercise	earlier	in
the	book	that	uses	the	Twitter	API.

Here	is	the	source	code	for	our	Twitter	spidering	application:

from	urllib.request	import	urlopen

import	urllib.error

import	twurl

import	json

import	sqlite3

import	ssl

TWITTER_URL	=	'https://api.twitter.com/1.1/friends/list.json'

conn	=	sqlite3.connect('spider.sqlite')

cur	=	conn.cursor()

cur.execute('''

												CREATE	TABLE	IF	NOT	EXISTS	Twitter

												(name	TEXT,	retrieved	INTEGER,	friends	INTEGER)''')

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

while	True:

				acct	=	input('Enter	a	Twitter	account,	or	quit:	')

				if	(acct	==	'quit'):	break

				if	(len(acct)	<	1):

								cur.execute('SELECT	name	FROM	Twitter	WHERE	retrieved	=	0	LIMIT	1'

								try:

												acct	=	cur.fetchone()[0]

								except:

												print('No	unretrieved	Twitter	accounts	found')

												continue

				url	=	twurl.augment(TWITTER_URL,	{'screen_name':	acct,	'count':	

				print('Retrieving',	url)

				connection	=	urlopen(url,	context=ctx)

				data	=	connection.read().decode()

				headers	=	dict(connection.getheaders())

				print('Remaining',	headers['x-rate-limit-remaining'])

				js	=	json.loads(data)

				#	Debugging

				#	print	json.dumps(js,	indent=4)

				cur.execute('UPDATE	Twitter	SET	retrieved=1	WHERE	name	=	?',	(acct,))

				countnew	=	0

				countold	=	0

				for	u	in	js['users']:

								friend	=	u['screen_name']

								print(friend)

								cur.execute('SELECT	friends	FROM	Twitter	WHERE	name	=	?	LIMIT	1'

																				(friend,))

								try:

												count	=	cur.fetchone()[0]

												cur.execute('UPDATE	Twitter	SET	friends	=	?	WHERE	name	=	?'

																								(count+1,	friend))

												countold	=	countold	+	1

								except:

												cur.execute('''INSERT	INTO	Twitter	(name,	retrieved,	friends)

																								VALUES	(?,	0,	1)''',	(friend,))

												countnew	=	countnew	+	1

				print('New	accounts=',	countnew,	'	revisited=',	countold)

				conn.commit()

cur.close()

#	Code:	http://www.py4e.com/code3/twspider.py

Our	 database	 is	 stored	 in	 the	 file	 spider.sqlite	 and	 it	 has	 one	 table	 named
Twitter.	 Each	 row	 in	 the	 Twitter	 table	 has	 a	 column	 for	 the	 account	 name,
whether	we	have	retrieved	the	friends	of	this	account,	and	how	many	times	this
account	has	been	"friended".

In	the	main	loop	of	the	program,	we	prompt	the	user	for	a	Twitter	account	name
or	"quit"	to	exit	the	program.	If	the	user	enters	a	Twitter	account,	we	retrieve	the
list	of	friends	and	statuses	for	that	user	and	add	each	friend	to	the	database	if	not
already	 in	 the	 database.	 If	 the	 friend	 is	 already	 in	 the	 list,	 we	 add	 1	 to	 the
friends	field	in	the	row	in	the	database.

If	the	user	presses	enter,	we	look	in	the	database	for	the	next	Twitter	account	that
we	have	not	yet	retrieved,	retrieve	the	friends	and	statuses	for	that	account,	add
them	to	the	database	or	update	them,	and	increase	their	friends	count.

Once	we	retrieve	the	list	of	friends	and	statuses,	we	loop	through	all	of	the	user
items	in	the	returned	JSON	and	retrieve	the	screen_name	for	each	user.	Then	we
use	 the	 SELECT	 statement	 to	 see	 if	 we	 already	 have	 stored	 this	 particular
screen_name	in	the	database	and	retrieve	the	friend	count	(friends)	if	the	record
exists.

countnew	=	0

countold	=	0

for	u	in	js['users']	:

				friend	=	u['screen_name']

				print(friend)

				cur.execute('SELECT	friends	FROM	Twitter	WHERE	name	=	?	LIMIT	1'

								(friend,))

				try:

								count	=	cur.fetchone()[0]

								cur.execute('UPDATE	Twitter	SET	friends	=	?	WHERE	name	=	?',

												(count+1,	friend))

								countold	=	countold	+	1

				except:

								cur.execute('''INSERT	INTO	Twitter	(name,	retrieved,	friends)

												VALUES	(?,	0,	1)''',	(friend,))

								countnew	=	countnew	+	1

print('New	accounts=',countnew,'	revisited=',countold)

conn.commit()

Once	the	cursor	executes	the	SELECT	 statement,	we	must	 retrieve	 the	rows.	We
could	 do	 this	with	 a	 for	 statement,	 but	 since	 we	 are	 only	 retrieving	 one	 row
(LIMIT	1),	we	can	use	the	fetchone()	method	to	fetch	the	first	(and	only)	row
that	is	the	result	of	the	SELECT	operation.	Since	fetchone()	returns	the	row	as	a
tuple	(even	though	there	is	only	one	field),	we	use	the	first	value	from	the	tuple
to	get	the	current	friend	count	into	the	variable	count.

If	 this	 retrieval	 is	 successful,	we	 use	 the	 SQL	 UPDATE	 statement	with	 a	WHERE
clause	 to	 add	 1	 to	 the	 friends	 column	 for	 the	 row	 that	 matches	 the	 friend's
account.	Notice	that	there	are	two	placeholders	(i.e.,	question	marks)	in	the	SQL,
and	the	second	parameter	to	the	execute()	is	a	two-element	tuple	that	holds	the
values	to	be	substituted	into	the	SQL	in	place	of	the	question	marks.

If	the	code	in	the	try	block	fails,	it	is	probably	because	no	record	matched	the
WHERE	name	=	?	clause	on	the	SELECT	statement.	So	in	the	except	block,	we
use	the	SQL	INSERT	statement	to	add	the	friend's	screen_name	to	the	table	with
an	indication	that	we	have	not	yet	retrieved	the	screen_name	and	set	the	friends
count	to	one.

So	the	first	time	the	program	runs	and	we	enter	a	Twitter	account,	the	program
runs	as	follows:

Enter	a	Twitter	account,	or	quit:	drchuck

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	20		revisited=	0

Enter	a	Twitter	account,	or	quit:	quit

Since	this	is	the	first	time	we	have	run	the	program,	the	database	does	not	exist,
so	 we	 create	 the	 database	 in	 the	 file	 spider.sqlite	 and	 add	 a	 table	 named
Twitter	to	the	database.	Then	we	retrieve	some	friends	and	add	them	all	to	the
database	since	the	database	is	empty.

At	this	point,	we	might	want	to	write	a	simple	database	dumper	to	take	a	look	at
what	is	in	our	spider.sqlite	file:

import	sqlite3

conn	=	sqlite3.connect('spider.sqlite')

cur	=	conn.cursor()

cur.execute('SELECT	*	FROM	Twitter')

count	=	0

for	row	in	cur:

				print(row)

				count	=	count	+	1

print(count,	'rows.')

cur.close()

#	Code:	http://www.py4e.com/code3/twdump.py

This	program	simply	opens	the	database	and	selects	all	of	the	columns	of	all	of
the	rows	in	the	table	Twitter,	 then	loops	through	the	rows	and	prints	out	each
row.

If	we	run	 this	program	after	 the	first	execution	of	our	Twitter	spider	above,	 its
output	will	be	as	follows:

('opencontent',	0,	1)

('lhawthorn',	0,	1)

('steve_coppin',	0,	1)

('davidkocher',	0,	1)

('hrheingold',	0,	1)

...

20	rows.

We	see	one	row	for	each	screen_name,	 that	we	have	not	 retrieved	 the	data	 for
that	screen_name,	and	everyone	in	the	database	has	one	friend.

Now	our	database	reflects	the	retrieval	of	the	friends	of	our	first	Twitter	account
(drchuck).	We	can	run	the	program	again	and	tell	it	to	retrieve	the	friends	of	the
next	"unprocessed"	account	by	simply	pressing	enter	instead	of	a	Twitter	account
as	follows:

Enter	a	Twitter	account,	or	quit:

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	18		revisited=	2

Enter	a	Twitter	account,	or	quit:

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	17		revisited=	3

Enter	a	Twitter	account,	or	quit:	quit

Since	we	pressed	enter	(i.e.,	we	did	not	specify	a	Twitter	account),	the	following
code	is	executed:

if	(len(acct)	<	1)	:

				cur.execute('SELECT	name	FROM	Twitter	WHERE	retrieved	=	0	LIMIT	1'

				try:

								acct	=	cur.fetchone()[0]

				except:

								print('No	unretrieved	twitter	accounts	found')

								continue

We	use	the	SQL	SELECT	statement	to	retrieve	the	name	of	the	first	(LIMIT	1)	user
who	still	has	their	"have	we	retrieved	this	user"	value	set	to	zero.	We	also	use	the
fetchone()[0]	pattern	within	a	try/except	block	to	either	extract	a	screen_name
from	the	retrieved	data	or	put	out	an	error	message	and	loop	back	up.

If	we	successfully	retrieved	an	unprocessed	screen_name,	we	retrieve	their	data
as	follows:

url=twurl.augment(TWITTER_URL,{'screen_name':	acct,'count':	'20'})

print('Retrieving',	url)

connection	=	urllib.urlopen(url)

data	=	connection.read()

js	=	json.loads(data)

cur.execute('UPDATE	Twitter	SET	retrieved=1	WHERE	name	=	?',(acct,))

Once	we	retrieve	 the	data	successfully,	we	use	 the	UPDATE	 statement	 to	 set	 the
retrieved	column	 to	1	 to	 indicate	 that	we	have	completed	 the	 retrieval	of	 the
friends	 of	 this	 account.	 This	 keeps	 us	 from	 retrieving	 the	 same	 data	 over	 and
over	and	keeps	us	progressing	forward	through	the	network	of	Twitter	friends.

If	we	run	the	friend	program	and	press	enter	twice	to	retrieve	the	next	unvisited
friend's	 friends,	 then	 run	 the	 dumping	 program,	 it	 will	 give	 us	 the	 following
output:

('opencontent',	1,	1)

('lhawthorn',	1,	1)

('steve_coppin',	0,	1)

('davidkocher',	0,	1)

('hrheingold',	0,	1)

...

('cnxorg',	0,	2)

('knoop',	0,	1)

('kthanos',	0,	2)

('LectureTools',	0,	1)

...

55	rows.

We	can	see	that	we	have	properly	recorded	that	we	have	visited	lhawthorn	and
opencontent.	 Also	 the	 accounts	 cnxorg	 and	 kthanos	 already	 have	 two
followers.	 Since	we	 now	 have	 retrieved	 the	 friends	 of	 three	 people	 (drchuck,
opencontent,	and	lhawthorn)	our	table	has	52	rows	of	friends	to	retrieve.

Each	 time	we	 run	 the	 program	 and	 press	 enter	 it	 will	 pick	 the	 next	 unvisited
account	 (e.g.,	 the	 next	 account	 will	 be	 steve_coppin),	 retrieve	 their	 friends,
mark	them	as	retrieved,	and	for	each	of	the	friends	of	steve_coppin	either	add
them	to	the	end	of	the	database	or	update	their	friend	count	if	they	are	already	in
the	database.

Since	the	program's	data	is	all	stored	on	disk	in	a	database,	the	spidering	activity
can	be	suspended	and	resumed	as	many	times	as	you	like	with	no	loss	of	data.

Basic	data	modeling

The	 real	 power	 of	 a	 relational	 database	 is	when	we	 create	multiple	 tables	 and
make	 links	 between	 those	 tables.	 The	 act	 of	 deciding	 how	 to	 break	 up	 your
application	data	 into	multiple	 tables	 and	establishing	 the	 relationships	between
the	 tables	 is	 called	data	modeling.	The	 design	document	 that	 shows	 the	 tables
and	their	relationships	is	called	a	data	model.

Data	modeling	is	a	relatively	sophisticated	skill	and	we	will	only	introduce	the
most	basic	concepts	of	relational	data	modeling	in	this	section.	For	more	detail
on	data	modeling	you	can	start	with:

http://en.wikipedia.org/wiki/Relational_model

Let's	 say	 for	our	Twitter	 spider	 application,	 instead	of	 just	 counting	 a	person's
friends,	we	wanted	to	keep	a	list	of	all	of	the	incoming	relationships	so	we	could

http://en.wikipedia.org/wiki/Relational_model

find	a	list	of	everyone	who	is	following	a	particular	account.

Since	everyone	will	potentially	have	many	accounts	that	follow	them,	we	cannot
simply	add	a	single	column	to	our	Twitter	table.	So	we	create	a	new	table	that
keeps	track	of	pairs	of	friends.	The	following	is	a	simple	way	of	making	such	a
table:

CREATE	TABLE	Pals	(from_friend	TEXT,	to_friend	TEXT)

Each	time	we	encounter	a	person	who	drchuck	is	following,	we	would	insert	a
row	of	the	form:

INSERT	INTO	Pals	(from_friend,to_friend)	VALUES	('drchuck',	'lhawthorn'

As	 we	 are	 processing	 the	 20	 friends	 from	 the	 drchuck	 Twitter	 feed,	 we	 will
insert	 20	 records	 with	 "drchuck"	 as	 the	 first	 parameter	 so	 we	 will	 end	 up
duplicating	the	string	many	times	in	the	database.

This	 duplication	 of	 string	 data	 violates	 one	 of	 the	 best	 practices	 for	 database
normalization	which	 basically	 states	 that	we	 should	 never	 put	 the	 same	 string
data	 in	 the	 database	more	 than	 once.	 If	we	 need	 the	 data	more	 than	 once,	we
create	a	numeric	key	for	the	data	and	reference	the	actual	data	using	this	key.

In	practical	terms,	a	string	takes	up	a	lot	more	space	than	an	integer	on	the	disk
and	in	the	memory	of	our	computer,	and	takes	more	processor	time	to	compare
and	sort.	If	we	only	have	a	few	hundred	entries,	the	storage	and	processor	time
hardly	matters.	But	if	we	have	a	million	people	in	our	database	and	a	possibility
of	100	million	friend	links,	it	is	important	to	be	able	to	scan	data	as	quickly	as
possible.

We	 will	 store	 our	 Twitter	 accounts	 in	 a	 table	 named	 People	 instead	 of	 the
Twitter	table	used	in	the	previous	example.	The	People	table	has	an	additional
column	 to	 store	 the	numeric	key	associated	with	 the	 row	 for	 this	Twitter	user.
SQLite	has	a	feature	that	automatically	adds	the	key	value	for	any	row	we	insert
into	a	table	using	a	special	type	of	data	column	(INTEGER	PRIMARY	KEY).

We	can	create	the	People	table	with	this	additional	id	column	as	follows:

CREATE	TABLE	People

				(id	INTEGER	PRIMARY	KEY,	name	TEXT	UNIQUE,	retrieved	INTEGER)

Notice	 that	 we	 are	 no	 longer	 maintaining	 a	 friend	 count	 in	 each	 row	 of	 the
People	 table.	 When	 we	 select	 INTEGER	 PRIMARY	 KEY	 as	 the	 type	 of	 our	 id
column,	we	are	indicating	that	we	would	like	SQLite	to	manage	this	column	and
assign	a	unique	numeric	key	 to	each	row	we	 insert	automatically.	We	also	add
the	keyword	UNIQUE	to	indicate	that	we	will	not	allow	SQLite	to	insert	two	rows
with	the	same	value	for	name.

Now	instead	of	creating	the	table	Pals	above,	we	create	a	table	called	Follows
with	two	integer	columns	from_id	and	to_id	and	a	constraint	on	the	 table	 that
the	 combination	 of	 from_id	 and	 to_id	 must	 be	 unique	 in	 this	 table	 (i.e.,	 we
cannot	insert	duplicate	rows)	in	our	database.

CREATE	TABLE	Follows

				(from_id	INTEGER,	to_id	INTEGER,	UNIQUE(from_id,	to_id))

When	we	add	UNIQUE	clauses	to	our	tables,	we	are	communicating	a	set	of	rules
that	we	are	asking	the	database	to	enforce	when	we	attempt	to	insert	records.	We
are	 creating	 these	 rules	 as	 a	 convenience	 in	our	 programs,	 as	we	will	 see	 in	 a
moment.	The	rules	both	keep	us	from	making	mistakes	and	make	 it	simpler	 to
write	some	of	our	code.

In	 essence,	 in	 creating	 this	 Follows	 table,	 we	 are	 modelling	 a	 "relationship"
where	 one	 person	 "follows"	 someone	 else	 and	 representing	 it	 with	 a	 pair	 of
numbers	indicating	that	(a)	the	people	are	connected	and	(b)	the	direction	of	the
relationship.

i d 	 n a m e 	 r e t r i e v e d

1 	 d r c h u c k 	 1 	
2 	 o p e n c o n t e n t 	 1
3 	 l h a w t h o r n 	 1
4 	 s t e v e _ c o p p i n 	 0
	 …

f r om _ i d 	 t o _ i d

1 	 2
1 	 3
1 	 4
	 …

opencontent

drchuck lhawthorn

steve_coppin

follows

Follows People

Relationships	Between	Tables

Programming	with	multiple	tables

We	will	now	redo	the	Twitter	spider	program	using	two	tables,	the	primary	keys,
and	the	key	references	as	described	above.	Here	is	the	code	for	the	new	version
of	the	program:

import	urllib.request,	urllib.parse,	urllib.error

import	twurl

import	json

import	sqlite3

import	ssl

TWITTER_URL	=	'https://api.twitter.com/1.1/friends/list.json'

conn	=	sqlite3.connect('friends.sqlite')

cur	=	conn.cursor()

cur.execute('''CREATE	TABLE	IF	NOT	EXISTS	People

				(id	INTEGER	PRIMARY	KEY,	name	TEXT	UNIQUE,	retrieved	INTEGER)'''

cur.execute('''CREATE	TABLE	IF	NOT	EXISTS	Follows

				(from_id	INTEGER,	to_id	INTEGER,	UNIQUE(from_id,	to_id))''')

#	Ignore	SSL	certificate	errors

ctx	=	ssl.create_default_context()

ctx.check_hostname	=	False

ctx.verify_mode	=	ssl.CERT_NONE

while	True:

				acct	=	input('Enter	a	Twitter	account,	or	quit:	')

				if	(acct	==	'quit'):	break

				if	(len(acct)	<	1):

								cur.execute(

											'SELECT	id,	name	FROM	People	WHERE	retrieved=0	LIMIT	1'

)

								try:

												(id,	acct)	=	cur.fetchone()

								except:

												print('No	unretrieved	Twitter	accounts	found')

												continue

				else:

								cur.execute('SELECT	id	FROM	People	WHERE	name	=	?	LIMIT	1',

																				(acct,))

								try:

												id	=	cur.fetchone()[0]

								except:

												cur.execute('''INSERT	OR	IGNORE	INTO	People

																								(name,	retrieved)	VALUES	(?,	0)''',	(acct,))

												conn.commit()

												if	cur.rowcount	!=	1:

																print('Error	inserting	account:',	acct)

																continue

												id	=	cur.lastrowid

				url	=	twurl.augment(TWITTER_URL,

								{'screen_name':	acct,	'count':	'100'})

				print('Retrieving	account',	acct)

				try:

								connection	=	urllib.request.urlopen(url,	context=ctx)

				except	Exception	as	err:

								print('Failed	to	Retrieve',	err)

								break

				data	=	connection.read().decode()

				headers	=	dict(connection.getheaders())

				print('Remaining',	headers['x-rate-limit-remaining'])

				try:

								js	=	json.loads(data)

				except:

								print('Unable	to	parse	json')

								print(data)

								break

				#	Debugging

				#	print(json.dumps(js,	indent=4))

				if	'users'	not	in	js:

								print('Incorrect	JSON	received')

								print(json.dumps(js,	indent=4))

								continue

				cur.execute('UPDATE	People	SET	retrieved=1	WHERE	name	=	?',	(acct,))

				countnew	=	0

				countold	=	0

				for	u	in	js['users']:

								friend	=	u['screen_name']

								print(friend)

								cur.execute('SELECT	id	FROM	People	WHERE	name	=	?	LIMIT	1',

																				(friend,))

								try:

												friend_id	=	cur.fetchone()[0]

												countold	=	countold	+	1

								except:

												cur.execute('''INSERT	OR	IGNORE	INTO	People	(name,	retrieved)

																								VALUES	(?,	0)''',	(friend,))

												conn.commit()

												if	cur.rowcount	!=	1:

																print('Error	inserting	account:',	friend)

																continue

												friend_id	=	cur.lastrowid

												countnew	=	countnew	+	1

								cur.execute('''INSERT	OR	IGNORE	INTO	Follows	(from_id,	to_id)

																				VALUES	(?,	?)''',	(id,	friend_id))

				print('New	accounts=',	countnew,	'	revisited=',	countold)

				print('Remaining',	headers['x-rate-limit-remaining'])

				conn.commit()

cur.close()

#	Code:	http://www.py4e.com/code3/twfriends.py

This	 program	 is	 starting	 to	 get	 a	 bit	 complicated,	 but	 it	 illustrates	 the	 patterns
that	we	 need	 to	 use	when	we	 are	 using	 integer	 keys	 to	 link	 tables.	 The	 basic
patterns	are:

1.	 Create	tables	with	primary	keys	and	constraints.

2.	 When	we	have	a	logical	key	for	a	person	(i.e.,	account	name)	and	we	need
the	 id	 value	 for	 the	 person,	 depending	 on	 whether	 or	 not	 the	 person	 is
already	in	the	People	table	we	either	need	to:	(1)	look	up	the	person	in	the
People	table	and	retrieve	the	id	value	for	the	person	or	(2)	add	the	person
to	the	People	table	and	get	the	id	value	for	the	newly	added	row.

3.	 Insert	the	row	that	captures	the	"follows"	relationship.

We	will	cover	each	of	these	in	turn.

Constraints	in	database	tables

As	we	design	our	table	structures,	we	can	tell	the	database	system	that	we	would
like	 it	 to	enforce	a	 few	rules	on	us.	These	rules	help	us	 from	making	mistakes
and	introducing	incorrect	data	into	our	tables.	When	we	create	our	tables:

cur.execute('''CREATE	TABLE	IF	NOT	EXISTS	People

				(id	INTEGER	PRIMARY	KEY,	name	TEXT	UNIQUE,	retrieved	INTEGER)'''

cur.execute('''CREATE	TABLE	IF	NOT	EXISTS	Follows

				(from_id	INTEGER,	to_id	INTEGER,	UNIQUE(from_id,	to_id))''')

We	indicate	that	the	name	column	in	the	People	 table	must	be	UNIQUE.	We	also
indicate	 that	 the	 combination	 of	 the	 two	 numbers	 in	 each	 row	of	 the	Follows
table	must	be	unique.	These	constraints	keep	us	from	making	mistakes	such	as
adding	the	same	relationship	more	than	once.

We	can	take	advantage	of	these	constraints	in	the	following	code:

cur.execute('''INSERT	OR	IGNORE	INTO	People	(name,	retrieved)

				VALUES	(?,	0)''',	(friend,))

We	 add	 the	 OR	 IGNORE	 clause	 to	 our	 INSERT	 statement	 to	 indicate	 that	 if	 this
particular	INSERT	would	cause	a	violation	of	the	"name	must	be	unique"	rule,	the
database	 system	 is	 allowed	 to	 ignore	 the	 INSERT.	 We	 are	 using	 the	 database
constraint	 as	 a	 safety	 net	 to	 make	 sure	 we	 don't	 inadvertently	 do	 something

incorrect.

Similarly,	the	following	code	ensures	that	we	don't	add	the	exact	same	Follows
relationship	twice.

cur.execute('''INSERT	OR	IGNORE	INTO	Follows

				(from_id,	to_id)	VALUES	(?,	?)''',	(id,	friend_id))

Again,	we	 simply	 tell	 the	database	 to	 ignore	our	 attempted	INSERT	 if	 it	would
violate	the	uniqueness	constraint	that	we	specified	for	the	Follows	rows.

Retrieve	and/or	insert	a	record

When	we	prompt	the	user	for	a	Twitter	account,	 if	 the	account	exists,	we	must
look	up	 its	id	 value.	 If	 the	 account	 does	not	 yet	 exist	 in	 the	People	 table,	we
must	insert	the	record	and	get	the	id	value	from	the	inserted	row.

This	 is	 a	 very	 common	 pattern	 and	 is	 done	 twice	 in	 the	 program	 above.	 This
code	 shows	 how	 we	 look	 up	 the	 id	 for	 a	 friend's	 account	 when	 we	 have
extracted	a	screen_name	from	a	user	node	in	the	retrieved	Twitter	JSON.

Since	over	time	it	will	be	increasingly	likely	that	the	account	will	already	be	in
the	 database,	we	 first	 check	 to	 see	 if	 the	People	 record	 exists	 using	 a	SELECT
statement.

If	all	goes	well2	inside	the	try	section,	we	retrieve	the	record	using	fetchone()
and	then	retrieve	the	first	(and	only)	element	of	the	returned	tuple	and	store	it	in
friend_id.

If	 the	SELECT	 fails,	 the	fetchone()[0]	 code	will	 fail	 and	 control	will	 transfer
into	the	except	section.

				friend	=	u['screen_name']

				cur.execute('SELECT	id	FROM	People	WHERE	name	=	?	LIMIT	1',

								(friend,))

				try:

								friend_id	=	cur.fetchone()[0]

								countold	=	countold	+	1

				except:

								cur.execute('''INSERT	OR	IGNORE	INTO	People	(name,	retrieved)

												VALUES	(?,	0)''',	(friend,))

								conn.commit()

								if	cur.rowcount	!=	1	:

												print('Error	inserting	account:',friend)

												continue

								friend_id	=	cur.lastrowid

								countnew	=	countnew	+	1

If	we	end	up	in	the	except	code,	it	simply	means	that	the	row	was	not	found,	so
we	must	insert	the	row.	We	use	INSERT	OR	IGNORE	just	to	avoid	errors	and	then
call	commit()	to	force	the	database	to	really	be	updated.	After	the	write	is	done,
we	can	check	the	cur.rowcount	to	see	how	many	rows	were	affected.	Since	we
are	attempting	to	insert	a	single	row,	if	the	number	of	affected	rows	is	something
other	than	1,	it	is	an	error.

If	the	INSERT	is	successful,	we	can	look	at	cur.lastrowid	to	find	out	what	value
the	database	assigned	to	the	id	column	in	our	newly	created	row.

Storing	the	friend	relationship

Once	 we	 know	 the	 key	 value	 for	 both	 the	 Twitter	 user	 and	 the	 friend	 in	 the
JSON,	it	is	a	simple	matter	to	insert	the	two	numbers	into	the	Follows	table	with
the	following	code:

cur.execute(

				'INSERT	OR	IGNORE	INTO	Follows	(from_id,	to_id)	VALUES	(?,	?)',

				(id,	friend_id)

)

Notice	that	we	let	the	database	take	care	of	keeping	us	from	"double-inserting"	a
relationship	by	creating	 the	 table	with	a	uniqueness	constraint	and	 then	adding
OR	IGNORE	to	our	INSERT	statement.

Here	is	a	sample	execution	of	this	program:

Enter	a	Twitter	account,	or	quit:

No	unretrieved	Twitter	accounts	found

Enter	a	Twitter	account,	or	quit:	drchuck

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	20		revisited=	0

Enter	a	Twitter	account,	or	quit:

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	17		revisited=	3

Enter	a	Twitter	account,	or	quit:

Retrieving	http://api.twitter.com/1.1/friends	...

New	accounts=	17		revisited=	3

Enter	a	Twitter	account,	or	quit:	quit

We	started	with	the	drchuck	account	and	then	let	the	program	automatically	pick
the	next	two	accounts	to	retrieve	and	add	to	our	database.

The	following	is	 the	first	 few	rows	in	 the	People	and	Follows	 tables	after	 this
run	is	completed:

People:

(1,	'drchuck',	1)

(2,	'opencontent',	1)

(3,	'lhawthorn',	1)

(4,	'steve_coppin',	0)

(5,	'davidkocher',	0)

55	rows.

Follows:

(1,	2)

(1,	3)

(1,	4)

(1,	5)

(1,	6)

60	rows.

You	can	see	the	id,	name,	and	visited	fields	in	the	People	table	and	you	see	the
numbers	 of	 both	 ends	 of	 the	 relationship	 in	 the	 Follows	 table.	 In	 the	 People
table,	we	can	see	that	the	first	three	people	have	been	visited	and	their	data	has
been	retrieved.	The	data	in	the	Follows	table	indicates	that	drchuck	(user	1)	is	a
friend	to	all	of	the	people	shown	in	the	first	five	rows.	This	makes	sense	because
the	first	data	we	retrieved	and	stored	was	the	Twitter	friends	of	drchuck.	If	you
were	 to	print	more	 rows	 from	 the	Follows	 table,	you	would	 see	 the	 friends	of
users	2	and	3	as	well.

Three	kinds	of	keys

Now	that	we	have	started	building	a	data	model	putting	our	data	 into	multiple

linked	tables	and	linking	the	rows	in	those	tables	using	keys,	we	need	to	look	at
some	terminology	around	keys.	There	are	generally	three	kinds	of	keys	used	in	a
database	model.

A	logical	key	 is	a	key	that	the	"real	world"	might	use	to	look	up	a	row.	In
our	 example	 data	 model,	 the	 name	 field	 is	 a	 logical	 key.	 It	 is	 the	 screen
name	for	the	user	and	we	indeed	look	up	a	user's	row	several	times	in	the
program	using	the	name	field.	You	will	often	find	that	it	makes	sense	to	add
a	UNIQUE	constraint	 to	a	logical	key.	Since	the	logical	key	is	how	we	look
up	 a	 row	 from	 the	 outside	 world,	 it	 makes	 little	 sense	 to	 allow	multiple
rows	with	the	same	value	in	the	table.

A	 primary	 key	 is	 usually	 a	 number	 that	 is	 assigned	 automatically	 by	 the
database.	It	generally	has	no	meaning	outside	the	program	and	is	only	used
to	link	rows	from	different	tables	together.	When	we	want	to	look	up	a	row
in	a	table,	usually	searching	for	the	row	using	the	primary	key	is	the	fastest
way	to	find	the	row.	Since	primary	keys	are	integer	numbers,	they	take	up
very	little	storage	and	can	be	compared	or	sorted	very	quickly.	In	our	data
model,	the	id	field	is	an	example	of	a	primary	key.

A	 foreign	 key	 is	 usually	 a	 number	 that	 points	 to	 the	 primary	 key	 of	 an
associated	row	in	a	different	table.	An	example	of	a	foreign	key	in	our	data
model	is	the	from_id.

We	are	using	a	naming	convention	of	always	calling	the	primary	key	field	name
id	and	appending	the	suffix	_id	to	any	field	name	that	is	a	foreign	key.

Using	JOIN	to	retrieve	data

Now	 that	we	have	 followed	 the	 rules	of	database	normalization	 and	have	data
separated	 into	 two	 tables,	 linked	 together	 using	 primary	 and	 foreign	 keys,	we
need	to	be	able	to	build	a	SELECT	that	reassembles	the	data	across	the	tables.

SQL	 uses	 the	 JOIN	 clause	 to	 reconnect	 these	 tables.	 In	 the	 JOIN	 clause	 you
specify	the	fields	that	are	used	to	reconnect	the	rows	between	the	tables.

The	following	is	an	example	of	a	SELECT	with	a	JOIN	clause:

SELECT	*	FROM	Follows	JOIN	People

				ON	Follows.from_id	=	People.id	WHERE	People.id	=	1

The	JOIN	clause	indicates	that	the	fields	we	are	selecting	cross	both	the	Follows
and	People	tables.	The	ON	clause	indicates	how	the	two	tables	are	to	be	joined:
Take	 the	rows	from	Follows	 and	append	 the	 row	from	People	where	 the	 field
from_id	in	Follows	is	the	same	the	id	value	in	the	People	table.

i d 	 n a m e

2 	 o p e n c o n t e n t
3 	 l h a w t h o r n
4 	 s t e v e _ c o p p i n

i d 	 n a m e 	 r e t r i e v e d

1 	 d r c h u c k 	 1 	
2 	 o p e n c o n t e n t 	 1
3 	 l h a w t h o r n 	 1
4 	 s t e v e _ c o p p i n 	 0
	 …

f r om _ i d 	 t o _ i d

1 	 2
1 	 3
1 	 4

f r o m _ i d 	 t o _ i d

1 	 2
1 	 3
1 	 4
	 …

n a m e 	 i d

d r c h u c k 	 1
d r c h u c k 	 1
d r c h u c k 	 1

Connecting	Tables	Using	JOIN

The	result	of	 the	JOIN	is	 to	create	extra-long	"metarows"	which	have	both	 the
fields	from	People	and	the	matching	fields	from	Follows.	Where	there	is	more
than	 one	 match	 between	 the	 id	 field	 from	 People	 and	 the	 from_id	 from
Follows,	 then	JOIN	creates	a	metarow	for	each	of	 the	matching	pairs	of	rows,
duplicating	data	as	needed.

The	following	code	demonstrates	the	data	that	we	will	have	in	the	database	after
the	multi-table	Twitter	spider	program	(above)	has	been	run	several	times.

import	sqlite3

conn	=	sqlite3.connect('friends.sqlite')

cur	=	conn.cursor()

cur.execute('SELECT	*	FROM	People')

count	=	0

print('People:')

for	row	in	cur:

				if	count	<	5:	print(row)

				count	=	count	+	1

print(count,	'rows.')

cur.execute('SELECT	*	FROM	Follows')

count	=	0

print('Follows:')

for	row	in	cur:

				if	count	<	5:	print(row)

				count	=	count	+	1

print(count,	'rows.')

cur.execute('''SELECT	*	FROM	Follows	JOIN	People

												ON	Follows.to_id	=	People.id

												WHERE	Follows.from_id	=	2''')

count	=	0

print('Connections	for	id=2:')

for	row	in	cur:

				if	count	<	5:	print(row)

				count	=	count	+	1

print(count,	'rows.')

cur.close()

#	Code:	http://www.py4e.com/code3/twjoin.py

In	this	program,	we	first	dump	out	the	People	and	Follows	and	then	dump	out	a
subset	of	the	data	in	the	tables	joined	together.

Here	is	the	output	of	the	program:

python	twjoin.py

People:

(1,	'drchuck',	1)

(2,	'opencontent',	1)

(3,	'lhawthorn',	1)

(4,	'steve_coppin',	0)

(5,	'davidkocher',	0)

55	rows.

Follows:

(1,	2)

(1,	3)

(1,	4)

(1,	5)

(1,	6)

60	rows.

Connections	for	id=2:

(2,	1,	1,	'drchuck',	1)

(2,	28,	28,	'cnxorg',	0)

(2,	30,	30,	'kthanos',	0)

(2,	102,	102,	'SomethingGirl',	0)

(2,	103,	103,	'ja_Pac',	0)

20	rows.

You	see	the	columns	from	the	People	and	Follows	tables	and	the	last	set	of	rows
is	the	result	of	the	SELECT	with	the	JOIN	clause.

In	the	last	select,	we	are	looking	for	accounts	that	are	friends	of	"opencontent"
(i.e.,	People.id=2).

In	each	of	the	"metarows"	in	the	last	select,	 the	first	 two	columns	are	from	the
Follows	 table	 followed	 by	 columns	 three	 through	 five	 from	 the	 People	 table.
You	 can	 also	 see	 that	 the	 second	 column	 (Follows.to_id)	 matches	 the	 third
column	(People.id)	in	each	of	the	joined-up	"metarows".

Summary

This	chapter	has	covered	a	lot	of	ground	to	give	you	an	overview	of	the	basics	of
using	 a	 database	 in	 Python.	 It	 is	more	 complicated	 to	write	 the	 code	 to	 use	 a
database	to	store	data	than	Python	dictionaries	or	flat	files	so	there	is	little	reason
to	 use	 a	 database	 unless	 your	 application	 truly	 needs	 the	 capabilities	 of	 a
database.	The	situations	where	a	database	can	be	quite	useful	are:	(1)	when	your
application	needs	 to	make	many	small	 random	updates	within	a	 large	data	 set,
(2)	when	your	data	is	so	large	it	cannot	fit	in	a	dictionary	and	you	need	to	look
up	information	repeatedly,	or	(3)	when	you	have	a	long-running	process	that	you
want	to	be	able	to	stop	and	restart	and	retain	the	data	from	one	run	to	the	next.

You	 can	 build	 a	 simple	 database	 with	 a	 single	 table	 to	 suit	 many	 application
needs,	 but	 most	 problems	 will	 require	 several	 tables	 and	 links/relationships
between	rows	in	different	tables.	When	you	start	making	links	between	tables,	it
is	 important	 to	 do	 some	 thoughtful	 design	 and	 follow	 the	 rules	 of	 database
normalization	 to	 make	 the	 best	 use	 of	 the	 database's	 capabilities.	 Since	 the
primary	motivation	for	using	a	database	is	that	you	have	a	large	amount	of	data

to	deal	with,	it	is	important	to	model	your	data	efficiently	so	your	programs	run
as	fast	as	possible.

Debugging

One	common	pattern	when	you	are	developing	a	Python	program	to	connect	to
an	SQLite	database	will	be	to	run	a	Python	program	and	check	the	results	using
the	Database	Browser	for	SQLite.	The	browser	allows	you	to	quickly	check	 to
see	if	your	program	is	working	properly.

You	 must	 be	 careful	 because	 SQLite	 takes	 care	 to	 keep	 two	 programs	 from
changing	the	same	data	at	the	same	time.	For	example,	if	you	open	a	database	in
the	 browser	 and	make	 a	 change	 to	 the	 database	 and	 have	 not	 yet	 pressed	 the
"save"	button	in	the	browser,	the	browser	"locks"	the	database	file	and	keeps	any
other	program	from	accessing	 the	 file.	 In	particular,	your	Python	program	will
not	be	able	to	access	the	file	if	it	is	locked.

So	a	solution	is	to	make	sure	to	either	close	the	database	browser	or	use	the	File
menu	 to	 close	 the	 database	 in	 the	 browser	 before	 you	 attempt	 to	 access	 the
database	from	Python	to	avoid	the	problem	of	your	Python	code	failing	because
the	database	is	locked.

Glossary

attribute
One	 of	 the	 values	 within	 a	 tuple.	More	 commonly	 called	 a	 "column"	 or
"field".

constraint
When	we	tell	the	database	to	enforce	a	rule	on	a	field	or	a	row	in	a	table.	A
common	 constraint	 is	 to	 insist	 that	 there	 can	 be	 no	 duplicate	 values	 in	 a
particular	field	(i.e.,	all	the	values	must	be	unique).

cursor
A	cursor	allows	you	to	execute	SQL	commands	in	a	database	and	retrieve
data	 from	 the	 database.	A	 cursor	 is	 similar	 to	 a	 socket	 or	 file	 handle	 for
network	connections	and	files,	respectively.

database	browser
A	piece	of	 software	 that	 allows	you	 to	directly	connect	 to	 a	database	and
manipulate	the	database	directly	without	writing	a	program.

foreign	key
A	 numeric	 key	 that	 points	 to	 the	 primary	 key	 of	 a	 row	 in	 another	 table.
Foreign	keys	establish	relationships	between	rows	stored	in	different	tables.

index
Additional	 data	 that	 the	 database	 software	 maintains	 as	 rows	 and	 inserts
into	a	table	to	make	lookups	very	fast.

logical	key
A	key	that	the	"outside	world"	uses	to	look	up	a	particular	row.	For	example
in	 a	 table	 of	 user	 accounts,	 a	 person's	 email	 address	 might	 be	 a	 good
candidate	as	the	logical	key	for	the	user's	data.

normalization
Designing	a	data	model	so	that	no	data	is	replicated.	We	store	each	item	of
data	at	one	place	in	the	database	and	reference	it	elsewhere	using	a	foreign
key.

primary	key
A	numeric	key	assigned	 to	each	 row	 that	 is	used	 to	 refer	 to	one	 row	 in	a
table	from	another	table.	Often	the	database	is	configured	to	automatically
assign	primary	keys	as	rows	are	inserted.

relation
An	area	within	a	database	that	contains	tuples	and	attributes.	More	typically
called	a	"table".

tuple
A	single	entry	in	a	database	table	that	is	a	set	of	attributes.	More	typically
called	"row".

1.	 SQLite	actually	does	allow	some	flexibility	 in	 the	 type	of	data	stored	in	a
column,	 but	 we	 will	 keep	 our	 data	 types	 strict	 in	 this	 chapter	 so	 the
concepts	apply	equally	to	other	database	systems	such	as	MySQL.↩

2.	 In	general,	when	a	sentence	starts	with	"if	all	goes	well"	you	will	find	that
the	code	needs	to	use	try/except.↩

Visualizing	data
So	far	we	have	been	learning	the	Python	language	and	then	learning	how	to	use
Python,	the	network,	and	databases	to	manipulate	data.

In	 this	 chapter,	we	 take	 a	 look	 at	 three	 complete	 applications	 that	 bring	 all	 of
these	 things	 together	 to	 manage	 and	 visualize	 data.	 You	 might	 use	 these
applications	 as	 sample	 code	 to	 help	 get	 you	 started	 in	 solving	 a	 real-world
problem.

Each	 of	 the	 applications	 is	 a	ZIP	 file	 that	 you	 can	 download	 and	 extract	 onto
your	computer	and	execute.

Building	a	OpenStreetMap	from	geocoded	data

In	this	project,	we	are	using	the	OpenStreetMap	geocoding	API	to	clean	up	some
user-entered	geographic	locations	of	university	names	and	then	placing	the	data
on	an	actual	OpenStreetMap.

An	OpenStreetMap

To	get	started,	download	the	application	from:

www.py4e.com/code3/opengeo.zip

The	 first	 problem	 to	 solve	 is	 that	 these	 geocoding	 APIs	 are	 rate-limited	 to	 a
certain	number	of	requests	per	day.	If	you	have	a	lot	of	data,	you	might	need	to
stop	and	restart	the	lookup	process	several	times.	So	we	break	the	problem	into
two	phases.

In	the	first	phase	we	take	our	input	"survey"	data	in	the	file	where.data	and	read
it	 one	 line	 at	 a	 time,	 and	 retrieve	 the	 geocoded	 information	 from	Google	 and
store	it	in	a	database	geodata.sqlite.	Before	we	use	the	geocoding	API	for	each
user-entered	location,	we	simply	check	to	see	if	we	already	have	the	data	for	that
particular	 line	 of	 input.	 The	 database	 is	 functioning	 as	 a	 local	 "cache"	 of	 our
geocoding	data	to	make	sure	we	never	ask	Google	for	the	same	data	twice.

You	can	restart	the	process	at	any	time	by	removing	the	file	geodata.sqlite.

Run	 the	 geoload.py	 program.	 This	 program	 will	 read	 the	 input	 lines	 in
where.data	and	for	each	line	check	to	see	if	 it	 is	already	in	the	database.	If	we
don't	have	the	data	for	the	location,	it	will	call	the	geocoding	API	to	retrieve	the
data	and	store	it	in	the	database.

Here	is	a	sample	run	after	there	is	already	some	data	in	the	database:

Found	in	database	AGH	University	of	Science	and	Technology

Found	in	database	Academy	of	Fine	Arts	Warsaw	Poland

Found	in	database	American	University	in	Cairo

Found	in	database	Arizona	State	University

Found	in	database	Athens	Information	Technology

Retrieving	https://py4e-data.dr-chuck.net/

			opengeo?q=BITS+Pilani

Retrieved	794	characters	{"type":"FeatureColl

Retrieving	https://py4e-data.dr-chuck.net/

http://www.py4e.com/code3/opengeo.zip

			opengeo?q=Babcock+University

Retrieved	760	characters	{"type":"FeatureColl

Retrieving	https://py4e-data.dr-chuck.net/

			opengeo?q=Banaras+Hindu+University

Retrieved	866	characters	{"type":"FeatureColl

...

The	first	five	locations	are	already	in	the	database	and	so	they	are	skipped.	The
program	 scans	 to	 the	 point	 where	 it	 finds	 new	 locations	 and	 starts	 retrieving
them.

The	geoload.py	program	can	be	stopped	at	any	time,	and	there	is	a	counter	that
you	 can	 use	 to	 limit	 the	 number	 of	 calls	 to	 the	 geocoding	 API	 for	 each	 run.
Given	that	the	where.data	only	has	a	few	hundred	data	items,	you	should	not	run
into	the	daily	rate	limit,	but	if	you	had	more	data	it	might	take	several	runs	over
several	days	to	get	your	database	to	have	all	of	the	geocoded	data	for	your	input.

Once	you	have	some	data	loaded	into	geodata.sqlite,	you	can	visualize	the	data
using	the	geodump.py	program.	This	program	reads	the	database	and	writes	the
file	where.js	with	the	location,	latitude,	and	longitude	in	the	form	of	executable
JavaScript	code.

A	run	of	the	geodump.py	program	is	as	follows:

AGH	University	of	Science	and	Technology,	Czarnowiejska,

Czarna	Wies,	Krowodrza,	Krakow,	Lesser	Poland

Voivodeship,	31-126,	Poland	50.0657	19.91895

Academy	of	Fine	Arts,	Krakowskie	Przedmiescie,

Northern	Srodmiescie,	Srodmiescie,	Warsaw,	Masovian

Voivodeship,	00-046,	Poland	52.239	21.0155

...

260	lines	were	written	to	where.js

Open	the	where.html	file	in	a	web	browser	to	view	the	data.

The	file	where.html	consists	of	HTML	and	JavaScript	to	visualize	a	Google	map.
It	reads	the	most	recent	data	in	where.js	to	get	the	data	to	be	visualized.	Here	is
the	format	of	the	where.js	file:

myData	=	[

[50.0657,19.91895,

'AGH	University	of	Science	and	Technology,	Czarnowiejska,

Czarna	Wies,	Krowodrza,	Krakow,	Lesser	Poland

Voivodeship,	31-126,	Poland	'],

[52.239,21.0155,

'Academy	of	Fine	Arts,	Krakowskie	Przedmiesciee,

Srodmiescie	Polnocne,	Srodmiescie,	Warsaw,

Masovian	Voivodeship,	00-046,	Poland'],

			...

];

This	is	a	JavaScript	variable	that	contains	a	list	of	lists.	The	syntax	for	JavaScript
list	constants	is	very	similar	to	Python,	so	the	syntax	should	be	familiar	to	you.

Simply	open	where.html	 in	a	browser	 to	see	 the	 locations.	You	can	hover	over
each	map	pin	to	find	the	location	that	the	geocoding	API	returned	for	the	user-
entered	input.	If	you	cannot	see	any	data	when	you	open	the	where.html	file,	you
might	want	to	check	the	JavaScript	or	developer	console	for	your	browser.

Visualizing	networks	and	interconnections

In	this	application,	we	will	perform	some	of	the	functions	of	a	search	engine.	We
will	 first	 spider	 a	 small	 subset	 of	 the	web	 and	 run	 a	 simplified	 version	 of	 the
Google	 page	 rank	 algorithm	 to	 determine	 which	 pages	 are	 most	 highly
connected,	and	then	visualize	the	page	rank	and	connectivity	of	our	small	corner
of	the	web.	We	will	use	the	D3	JavaScript	visualization	library	http://d3js.org/	to
produce	the	visualization	output.

You	can	download	and	extract	this	application	from:

www.py4e.com/code3/pagerank.zip

http://d3js.org/
http://www.py4e.com/code3/pagerank.zip

A	Page	Ranking

The	 first	 program	 (spider.py)	 program	 crawls	 a	web	 site	 and	 pulls	 a	 series	 of
pages	 into	 the	database	 (spider.sqlite),	 recording	 the	 links	 between	 pages.	You
can	 restart	 the	 process	 at	 any	 time	 by	 removing	 the	 spider.sqlite	 file	 and
rerunning	spider.py.

Enter	web	url	or	enter:	http://www.dr-chuck.com/

['http://www.dr-chuck.com']

How	many	pages:2

1	http://www.dr-chuck.com/	12

2	http://www.dr-chuck.com/csev-blog/	57

How	many	pages:

In	this	sample	run,	we	told	it	 to	crawl	a	website	and	retrieve	two	pages.	If	you
restart	the	program	and	tell	it	to	crawl	more	pages,	it	will	not	re-crawl	any	pages
already	in	the	database.	Upon	restart	it	goes	to	a	random	non-crawled	page	and
starts	there.	So	each	successive	run	of	spider.py	is	additive.

Enter	web	url	or	enter:	http://www.dr-chuck.com/

['http://www.dr-chuck.com']

How	many	pages:3

3	http://www.dr-chuck.com/csev-blog	57

4	http://www.dr-chuck.com/dr-chuck/resume/speaking.htm	1

5	http://www.dr-chuck.com/dr-chuck/resume/index.htm	13

How	many	pages:

You	can	have	multiple	starting	points	in	the	same	database--within	the	program,
these	 are	 called	 "webs".	The	 spider	 chooses	 randomly	 amongst	 all	 non-visited
links	across	all	the	webs	as	the	next	page	to	spider.

If	you	want	to	dump	the	contents	of	the	spider.sqlite	file,	you	can	run	spdump.py
as	follows:

(5,	None,	1.0,	3,	'http://www.dr-chuck.com/csev-blog')

(3,	None,	1.0,	4,	'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')

(1,	None,	1.0,	2,	'http://www.dr-chuck.com/csev-blog/')

(1,	None,	1.0,	5,	'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4	rows.

This	shows	the	number	of	incoming	links,	the	old	page	rank,	the	new	page	rank,
the	id	of	the	page,	and	the	url	of	the	page.	The	spdump.py	program	only	shows
pages	that	have	at	least	one	incoming	link	to	them.

Once	you	have	a	few	pages	in	the	database,	you	can	run	page	rank	on	the	pages
using	the	sprank.py	program.	You	simply	tell	it	how	many	page	rank	iterations	to
run.

How	many	iterations:2

1	0.546848992536

2	0.226714939664

[(1,	0.559),	(2,	0.659),	(3,	0.985),	(4,	2.135),	(5,	0.659)]

You	can	dump	the	database	again	to	see	that	page	rank	has	been	updated:

(5,	1.0,	0.985,	3,	'http://www.dr-chuck.com/csev-blog')

(3,	1.0,	2.135,	4,	'http://www.dr-chuck.com/dr-chuck/resume/speaking.htm')

(1,	1.0,	0.659,	2,	'http://www.dr-chuck.com/csev-blog/')

(1,	1.0,	0.659,	5,	'http://www.dr-chuck.com/dr-chuck/resume/index.htm')

4	rows.

You	can	run	sprank.py	 as	many	 times	as	you	 like	and	 it	will	 simply	 refine	 the
page	rank	each	time	you	run	it.	You	can	even	run	sprank.py	a	few	times	and	then
go	spider	a	few	more	pages	with	spider.py	and	then	run	sprank.py	to	reconverge
the	page	rank	values.	A	search	engine	usually	runs	both	the	crawling	and	ranking
programs	all	the	time.

If	 you	 want	 to	 restart	 the	 page	 rank	 calculations	 without	 respidering	 the	 web
pages,	you	can	use	spreset.py	and	then	restart	sprank.py.

How	many	iterations:50

1	0.546848992536

2	0.226714939664

3	0.0659516187242

4	0.0244199333

5	0.0102096489546

6	0.00610244329379

...

42	0.000109076928206

43	9.91987599002e-05

44	9.02151706798e-05

45	8.20451504471e-05

46	7.46150183837e-05

47	6.7857770908e-05

48	6.17124694224e-05

49	5.61236959327e-05

50	5.10410499467e-05

[(512,	0.0296),	(1,	12.79),	(2,	28.93),	(3,	6.808),	(4,	13.46)]

For	each	iteration	of	the	page	rank	algorithm	it	prints	the	average	change	in	page
rank	per	 page.	The	network	 initially	 is	 quite	 unbalanced	 and	 so	 the	 individual
page	rank	values	change	wildly	between	iterations.	But	in	a	few	short	iterations,
the	page	 rank	 converges.	You	 should	 run	 sprank.py	 long	enough	 that	 the	page
rank	values	converge.

If	 you	 want	 to	 visualize	 the	 current	 top	 pages	 in	 terms	 of	 page	 rank,	 run
spjson.py	to	read	the	database	and	write	the	data	for	the	most	highly	linked	pages
in	JSON	format	to	be	viewed	in	a	web	browser.

Creating	JSON	output	on	spider.json...

How	many	nodes?	30

Open	force.html	in	a	browser	to	view	the	visualization

You	can	view	this	data	by	opening	the	file	force.html	in	your	web	browser.	This
shows	an	automatic	 layout	of	 the	nodes	and	 links.	You	can	click	and	drag	any
node	and	you	can	also	double-click	on	a	node	to	find	the	URL	that	is	represented
by	the	node.

If	you	rerun	the	other	utilities,	rerun	spjson.py	and	press	refresh	in	the	browser	to
get	the	new	data	from	spider.json.

Visualizing	mail	data

Up	 to	 this	 point	 in	 the	 book,	 you	 have	 become	 quite	 familiar	with	 our	mbox-
short.txt	and	mbox.txt	data	files.	Now	it	is	time	to	take	our	analysis	of	email	data
to	the	next	level.

In	the	real	world,	sometimes	you	have	to	pull	down	mail	data	from	servers.	That
might	take	quite	some	time	and	the	data	might	be	inconsistent,	error-filled,	and
need	a	lot	of	cleanup	or	adjustment.	In	this	section,	we	work	with	an	application
that	 is	 the	most	 complex	 so	 far	 and	 pull	 down	 nearly	 a	 gigabyte	 of	 data	 and
visualize	it.

A	Word	Cloud	from	the	Sakai	Developer	List

You	can	download	this	application	from:

https://www.py4e.com/code3/gmane.zip

We	will	 be	 using	 data	 from	 a	 free	 email	 list	 archiving	 service	 that	was	 called
gmane	-	the	service	has	since	been	shut	down	and	for	the	purposes	of	this	course,
a	partial	 archive	has	been	kept	 at	http://mbox.dr-chuck.net.	The	gmane	 service
was	very	popular	with	open	source	projects	because	it	provided	a	nice	searchable
archive	of	their	email	activity.

http://mbox.dr-chuck.net/export.php

When	the	Sakai	email	data	was	spidered	using	this	software,	it	produced	nearly	a

https://www.py4e.com/code3/gmane.zip
http://mbox.dr-chuck.net
http://mbox.dr-chuck.net/export.php

Gigabyte	 of	 data	 and	 took	 a	 number	 of	 runs	 on	 several	 days.	 The	 file
README.txt	 in	 the	 above	 ZIP	 may	 have	 instructions	 as	 to	 how	 you	 can
download	 a	 pre-spidered	 copy	 of	 the	 content.sqlite	 file	 for	 a	 majority	 of	 the
Sakai	 email	 corpus	 so	 you	 don't	 have	 to	 spider	 for	 five	 days	 just	 to	 run	 the
programs.	 If	 you	 download	 the	 pre-spidered	 content,	 you	 should	 still	 run	 the
spidering	process	to	catch	up	with	more	recent	messages.

The	 first	 step	 is	 to	 spider	 the	 repository.	 The	 base	 URL	 is	 hard-coded	 in	 the
gmane.py	and	is	hard-coded	to	the	Sakai	developer	list.	You	can	spider	another
repository	by	changing	that	base	url.	Make	sure	to	delete	the	content.sqlite	file	if
you	switch	the	base	url.

The	gmane.py	file	operates	as	a	responsible	caching	spider	in	that	it	runs	slowly
and	 retrieves	 one	mail	message	 per	 second	 so	 as	 to	 avoid	 getting	 throttled.	 It
stores	all	of	its	data	in	a	database	and	can	be	interrupted	and	restarted	as	often	as
needed.	It	may	take	many	hours	to	pull	all	 the	data	down.	So	you	may	need	to
restart	several	times.

Here	 is	 a	 run	 of	 gmane.py	 retrieving	 the	 last	 five	 messages	 of	 the	 Sakai
developer	list:

How	many	messages:10

http://mbox.dr-chuck.net/sakai.devel/51410/51411	9460

				nealcaidin@sakaifoundation.org	2013-04-05	re:	[building	...

http://mbox.dr-chuck.net/sakai.devel/51411/51412	3379

				samuelgutierrezjimenez@gmail.com	2013-04-06	re:	[building	...

http://mbox.dr-chuck.net/sakai.devel/51412/51413	9903

				da1@vt.edu	2013-04-05	[building	sakai]	melete	2.9	oracle	...

http://mbox.dr-chuck.net/sakai.devel/51413/51414	349265

				m.shedid@elraed-it.com	2013-04-07	[building	sakai]	...

http://mbox.dr-chuck.net/sakai.devel/51414/51415	3481

				samuelgutierrezjimenez@gmail.com	2013-04-07	re:	...

http://mbox.dr-chuck.net/sakai.devel/51415/51416	0

Does	not	start	with	From

The	program	scans	content.sqlite	 from	one	up	 to	 the	 first	message	number	not
already	spidered	and	starts	spidering	at	that	message.	It	continues	spidering	until
it	has	spidered	the	desired	number	of	messages	or	it	reaches	a	page	that	does	not
appear	to	be	a	properly	formatted	message.

Sometimes	 the	 repository	 is	 missing	 a	 message.	 Perhaps	 administrators	 can

delete	messages	or	perhaps	they	get	lost.	If	your	spider	stops,	and	it	seems	it	has
hit	 a	 missing	 message,	 go	 into	 the	 SQLite	 Manager	 and	 add	 a	 row	 with	 the
missing	 id	 leaving	 all	 the	 other	 fields	 blank	 and	 restart	 gmane.py.	 This	 will
unstick	 the	 spidering	 process	 and	 allow	 it	 to	 continue.	 These	 empty	messages
will	be	ignored	in	the	next	phase	of	the	process.

One	nice	thing	is	that	once	you	have	spidered	all	of	the	messages	and	have	them
in	content.sqlite,	you	can	run	gmane.py	 again	 to	get	new	messages	as	 they	are
sent	to	the	list.

The	 content.sqlite	 data	 is	 pretty	 raw,	 with	 an	 inefficient	 data	 model,	 and	 not
compressed.	This	 is	 intentional	as	 it	 allows	you	 to	 look	at	content.sqlite	 in	 the
SQLite	Manager	 to	 debug	 problems	with	 the	 spidering	 process.	 It	would	 be	 a
bad	idea	to	run	any	queries	against	this	database,	as	they	would	be	quite	slow.

The	second	process	is	to	run	the	program	gmodel.py.	This	program	reads	the	raw
data	from	content.sqlite	and	produces	a	cleaned-up	and	well-modeled	version	of
the	 data	 in	 the	 file	 index.sqlite.	 This	 file	 will	 be	 much	 smaller	 (often	 10X
smaller)	than	content.sqlite	because	it	also	compresses	the	header	and	body	text.

Each	 time	gmodel.py	 runs	 it	 deletes	 and	 rebuilds	 index.sqlite,	 allowing	 you	 to
adjust	 its	parameters	and	edit	 the	mapping	 tables	 in	content.sqlite	 to	 tweak	 the
data	cleaning	process.	This	is	a	sample	run	of	gmodel.py.	It	prints	a	line	out	each
time	250	mail	messages	are	processed	so	you	can	see	some	progress	happening,
as	this	program	may	run	for	a	while	processing	nearly	a	Gigabyte	of	mail	data.

Loaded	allsenders	1588	and	mapping	28	dns	mapping	1

1	2005-12-08T23:34:30-06:00	ggolden22@mac.com

251	2005-12-22T10:03:20-08:00	tpamsler@ucdavis.edu

501	2006-01-12T11:17:34-05:00	lance@indiana.edu

751	2006-01-24T11:13:28-08:00	vrajgopalan@ucmerced.edu

...

The	gmodel.py	program	handles	a	number	of	data	cleaning	tasks.

Domain	names	are	 truncated	 to	 two	 levels	 for	 .com,	 .org,	 .edu,	and	 .net.	Other
domain	names	are	truncated	to	three	levels.	So	si.umich.edu	becomes	umich.edu
and	 caret.cam.ac.uk	 becomes	 cam.ac.uk.	 Email	 addresses	 are	 also	 forced	 to
lower	case,	and	some	of	the	@gmane.org	address	like	the	following

arwhyte-63aXycvo3TyHXe+LvDLADg@public.gmane.org

are	converted	to	the	real	address	whenever	there	is	a	matching	real	email	address
elsewhere	in	the	message	corpus.

In	the	mapping.sqlite	database	 there	are	 two	 tables	 that	allow	you	 to	map	both
domain	names	 and	 individual	 email	 addresses	 that	 change	over	 the	 lifetime	of
the	email	list.	For	example,	Steve	Githens	used	the	following	email	addresses	as
he	changed	jobs	over	the	life	of	the	Sakai	developer	list:

s-githens@northwestern.edu

sgithens@cam.ac.uk

swgithen@mtu.edu

We	can	add	two	entries	to	the	Mapping	table	in	mapping.sqlite	so	gmodel.py	will
map	all	three	to	one	address:

s-githens@northwestern.edu	->		swgithen@mtu.edu

sgithens@cam.ac.uk	->	swgithen@mtu.edu

You	can	also	make	similar	entries	in	the	DNSMapping	table	if	there	are	multiple
DNS	 names	 you	want	mapped	 to	 a	 single	 DNS.	 The	 following	mapping	 was
added	to	the	Sakai	data:

iupui.edu	->	indiana.edu

so	 all	 the	 accounts	 from	 the	 various	 Indiana	University	 campuses	 are	 tracked
together.

You	 can	 rerun	 the	 gmodel.py	 over	 and	 over	 as	 you	 look	 at	 the	 data,	 and	 add
mappings	 to	make	 the	 data	 cleaner	 and	 cleaner.	When	 you	 are	 done,	 you	will
have	a	nicely	indexed	version	of	the	email	in	index.sqlite.	This	is	the	file	to	use
to	do	data	analysis.	With	this	file,	data	analysis	will	be	really	quick.

The	first,	simplest	data	analysis	 is	 to	determine	"who	sent	 the	most	mail?"	and
"which	organization	sent	the	most	mail"?	This	is	done	using	gbasic.py:

How	many	to	dump?	5

Loaded	messages=	51330	subjects=	25033	senders=	1584

Top	5	Email	list	participants

steve.swinsburg@gmail.com	2657

azeckoski@unicon.net	1742

ieb@tfd.co.uk	1591

csev@umich.edu	1304

david.horwitz@uct.ac.za	1184

Top	5	Email	list	organizations

gmail.com	7339

umich.edu	6243

uct.ac.za	2451

indiana.edu	2258

unicon.net	2055

Note	 how	much	 more	 quickly	 gbasic.py	 runs	 compared	 to	 gmane.py	 or	 even
gmodel.py.	 They	 are	 all	working	 on	 the	 same	 data,	 but	gbasic.py	 is	 using	 the
compressed	 and	 normalized	 data	 in	 index.sqlite.	 If	 you	 have	 a	 lot	 of	 data	 to
manage,	 a	 multistep	 process	 like	 the	 one	 in	 this	 application	 may	 take	 a	 little
longer	to	develop,	but	will	save	you	a	lot	of	time	when	you	really	start	to	explore
and	visualize	your	data.

You	 can	 produce	 a	 simple	 visualization	 of	 the	 word	 frequency	 in	 the	 subject
lines	in	the	file	gword.py:

Range	of	counts:	33229	129

Output	written	to	gword.js

This	 produces	 the	 file	 gword.js	 which	 you	 can	 visualize	 using	 gword.htm	 to
produce	a	word	cloud	similar	to	the	one	at	the	beginning	of	this	section.

A	second	visualization	is	produced	by	gline.py.	 It	computes	email	participation
by	organizations	over	time.

Loaded	messages=	51330	senders=	1584

Top	10	Oranizations

['gmail.com',	'umich.edu',	'uct.ac.za',	'indiana.edu',

'unicon.net',	'tfd.co.uk',	'berkeley.edu',	'longsight.com',

'stanford.edu',	'ox.ac.uk']

Output	written	to	gline.js

Its	output	is	written	to	gline.js	which	is	visualized	using	gline.htm.

Sakai	Mail	Activity	by	Organization

This	is	a	relatively	complex	and	sophisticated	application	and	has	features	to	do
some	real	data	retrieval,	cleaning,	and	visualization.

Credits
Editorial	Support:	Elliott	Hauser,	Sue	Blumenberg

Cover	Design:	Aimee	Andrion

Printing	History

2023-Jun-29	Many	errata	included
2016-Jul-05	First	Complete	Python	3.0	version
2015-Dec-20	Initial	Python	3.0	rough	conversion

Copyright	Details

Copyright	2009-	Dr.	Charles	R.	Severance.

This	work	is	 licensed	under	a	Creative	Commons	Attribution-NonCommercial-

ShareAlike	3.0	Unported	License.	This	license	is	available	at

http://creativecommons.org/licenses/by-nc-sa/3.0/

You	can	see	what	the	author	considers	commercial	and	non-commercial	uses	of
this	 material	 as	 well	 as	 license	 exemptions	 in	 the	 Appendix	 titled	 "Copyright
Detail".

Preface
Remixing	an	Open	Book

It	is	quite	natural	for	academics	who	are	continuously	told	to	"publish	or	perish"
to	want	to	always	create	something	from	scratch	that	is	their	own	fresh	creation.
This	book	is	an	experiment	in	not	starting	from	scratch,	but	instead	"remixing"
the	book	titled	Think	Python:	How	to	Think	Like	a	Computer	Scientist	written	by
Allen	B.	Downey,	Jeff	Elkner,	and	others.

In	December	of	2009,	I	was	preparing	to	teach	SI502	-	Networked	Programming
at	the	University	of	Michigan	for	the	fifth	semester	in	a	row	and	decided	it	was
time	 to	 write	 a	 Python	 textbook	 that	 focused	 on	 exploring	 data	 instead	 of
understanding	algorithms	and	abstractions.	My	goal	in	SI502	is	to	teach	people
lifelong	data	handling	skills	using	Python.	Few	of	my	students	were	planning	to
be	 professional	 computer	 programmers.	 Instead,	 they	 planned	 to	 be	 librarians,
managers,	 lawyers,	 biologists,	 economists,	 etc.,	 who	 happened	 to	 want	 to
skillfully	use	technology	in	their	chosen	field.

I	never	seemed	to	find	the	perfect	data-oriented	Python	book	for	my	course,	so	I
set	out	to	write	just	such	a	book.	Luckily	at	a	faculty	meeting	three	weeks	before
I	was	about	to	start	my	new	book	from	scratch	over	the	holiday	break,	Dr.	Atul
Prakash	 showed	 me	 the	 Think	 Python	 book	 which	 he	 had	 used	 to	 teach	 his
Python	course	 that	 semester.	 It	 is	 a	well-written	Computer	Science	 text	with	a
focus	on	short,	direct	explanations	and	ease	of	learning.

The	 overall	 book	 structure	 has	 been	 changed	 to	 get	 to	 doing	 data	 analysis
problems	 as	 quickly	 as	 possible	 and	 have	 a	 series	 of	 running	 examples	 and
exercises	about	data	analysis	from	the	very	beginning.

Chapters	2-10	are	similar	to	the	Think	Python	book,	but	 there	have	been	major
changes.	Number-oriented	examples	and	exercises	have	been	replaced	with	data-
oriented	exercises.	Topics	are	presented	in	the	order	needed	to	build	increasingly
sophisticated	data	analysis	solutions.	Some	topics	like	try	and	except	are	pulled
forward	and	presented	as	part	of	the	chapter	on	conditionals.	Functions	are	given
very	 light	 treatment	until	 they	are	needed	 to	handle	program	complexity	 rather

than	 introduced	 as	 an	 early	 lesson	 in	 abstraction.	 Nearly	 all	 user-defined
functions	 have	 been	 removed	 from	 the	 example	 code	 and	 exercises	 outside	 of
Chapter	4.	The	word	"recursion"1	does	not	appear	in	the	book	at	all.

In	chapters	1	and	11-16,	all	of	the	material	is	brand	new,	focusing	on	real-world
uses	 and	 simple	 examples	 of	 Python	 for	 data	 analysis	 including	 regular
expressions	 for	 searching	 and	 parsing,	 automating	 tasks	 on	 your	 computer,
retrieving	data	across	the	network,	scraping	web	pages	for	data,	object-oriented
programming,	 using	web	 services,	 parsing	XML	 and	 JSON	 data,	 creating	 and
using	databases	using	Structured	Query	Language,	and	visualizing	data.

The	ultimate	goal	of	all	of	these	changes	is	to	shift	from	a	Computer	Science	to
an	Informatics	focus	and	to	only	include	topics	into	a	first	technology	class	that
can	be	useful	even	if	one	chooses	not	to	become	a	professional	programmer.

Students	who	find	this	book	interesting	and	want	to	further	explore	should	look
at	 Allen	 B.	 Downey's	 Think	 Python	 book.	 Because	 there	 is	 a	 lot	 of	 overlap
between	 the	 two	 books,	 students	 will	 quickly	 pick	 up	 skills	 in	 the	 additional
areas	 of	 technical	 programming	 and	 algorithmic	 thinking	 that	 are	 covered	 in
Think	Python.	And	given	that	the	books	have	a	similar	writing	style,	they	should
be	able	to	move	quickly	through	Think	Python	with	a	minimum	of	effort.

As	 the	 copyright	 holder	 of	 Think	 Python,	 Allen	 has	 given	 me	 permission	 to
change	the	book's	license	on	the	material	from	his	book	that	remains	in	this	book
from	 the	 GNU	 Free	 Documentation	 License	 to	 the	 more	 recent	 Creative
Commons	Attribution	--	Share	Alike	license.	This	follows	a	general	shift	in	open
documentation	 licenses	 moving	 from	 the	 GFDL	 to	 the	 CC-BY-SA	 (e.g.,
Wikipedia).	Using	 the	CC-BY-SA	 license	maintains	 the	 book's	 strong	 copyleft
tradition	while	making	it	even	more	straightforward	for	new	authors	to	reuse	this
material	as	they	see	fit.

I	feel	that	this	book	serves	as	an	example	of	why	open	materials	are	so	important
to	the	future	of	education,	and	I	want	to	thank	Allen	B.	Downey	and	Cambridge
University	Press	 for	 their	 forward-looking	decision	 to	make	 the	book	available
under	an	open	copyright.	I	hope	they	are	pleased	with	the	results	of	my	efforts
and	I	hope	that	you,	the	reader,	are	pleased	with	our	collective	efforts.

I	 would	 like	 to	 thank	 Allen	 B.	 Downey	 and	 Lauren	 Cowles	 for	 their	 help,
patience,	and	guidance	in	dealing	with	and	resolving	the	copyright	issues	around

this	book.

Charles	Severance
www.dr-chuck.com
Ann	Arbor,	MI,	USA
September	9,	2013

Charles	 Severance	 is	 a	 Clinical	 Associate	 Professor	 at	 the	 University	 of
Michigan	School	of	Information.

1.	 Except,	of	course,	for	this	line.↩

Contributions
Contributor	List	for	Python	for	Everybody

Andrzej	 Wojtowicz,	 Elliott	 Hauser,	 Stephen	 Catto,	 Sue	 Blumenberg,	 Tamara
Brunnock,	 Mihaela	 Mack,	 Chris	 Kolosiwsky,	 Dustin	 Farley,	 Jens	 Leerssen,
Naveen	 KT,	 Mirza	 Ibrahimovic,	 Naveen	 (@togarnk),	 Zhou	 Fangyi,	 Alistair
Walsh,	Erica	Brody,	Jih-Sheng	Huang,	Louis	Luangkesorn,	and	Michael	Fudge

You	can	see	contribution	details	at:

https://github.com/csev/py4e/graphs/contributors

Contributor	List	for	Python	for	Informatics

Bruce	Shields	for	copy	editing	early	drafts,	Sarah	Hegge,	Steven	Cherry,	Sarah
Kathleen	Barbarow,	Andrea	Parker,	Radaphat	Chongthammakun,	Megan	Hixon,
Kirby	 Urner,	 Sarah	 Kathleen	 Barbrow,	 Katie	 Kujala,	 Noah	 Botimer,	 Emily
Alinder,	 Mark	 Thompson-Kular,	 James	 Perry,	 Eric	 Hofer,	 Eytan	 Adar,	 Peter
Robinson,	 Deborah	 J.	 Nelson,	 Jonathan	 C.	 Anthony,	 Eden	 Rassette,	 Jeannette
Schroeder,	Justin	Feezell,	Chuanqi	Li,	Gerald	Gordinier,	Gavin	Thomas	Strassel,
Ryan	 Clement,	 Alissa	 Talley,	 Caitlin	 Holman,	 Yong-Mi	 Kim,	 Karen	 Stover,
Cherie	 Edmonds,	Maria	 Seiferle,	 Romer	Kristi	 D.	Aranas	 (RK),	Grant	 Boyer,
Hedemarrie	Dussan,

Preface	for	"Think	Python"

The	strange	history	of	"Think	Python"

(Allen	B.	Downey)

In	January	1999	I	was	preparing	to	teach	an	introductory	programming	class	in
Java.	I	had	taught	it	three	times	and	I	was	getting	frustrated.	The	failure	rate	in
the	class	was	too	high	and,	even	for	students	who	succeeded,	the	overall	level	of
achievement	was	too	low.

One	of	 the	 problems	 I	 saw	was	 the	 books.	They	were	 too	big,	with	 too	much
unnecessary	detail	about	Java,	and	not	enough	high-level	guidance	about	how	to
program.	And	 they	 all	 suffered	 from	 the	 trap	door	 effect:	 they	would	 start	 out
easy,	 proceed	 gradually,	 and	 then	 somewhere	 around	 Chapter	 5	 the	 bottom
would	 fall	 out.	The	 students	would	get	 too	much	new	material,	 too	 fast,	 and	 I
would	spend	the	rest	of	the	semester	picking	up	the	pieces.

Two	weeks	before	the	first	day	of	classes,	I	decided	to	write	my	own	book.	My
goals	were:

Keep	 it	 short.	 It	 is	 better	 for	 students	 to	 read	 10	 pages	 than	 not	 read	 50
pages.

Be	careful	with	vocabulary.	I	tried	to	minimize	the	jargon	and	define	each
term	at	first	use.

Build	 gradually.	 To	 avoid	 trap	 doors,	 I	 took	 the	most	 difficult	 topics	 and
split	them	into	a	series	of	small	steps.

Focus	 on	 programming,	 not	 the	 programming	 language.	 I	 included	 the
minimum	useful	subset	of	Java	and	left	out	the	rest.

I	needed	a	title,	so	on	a	whim	I	chose	How	to	Think	Like	a	Computer	Scientist.

My	 first	 version	was	 rough,	 but	 it	worked.	 Students	 did	 the	 reading,	 and	 they
understood	 enough	 that	 I	 could	 spend	 class	 time	 on	 the	 hard	 topics,	 the
interesting	topics	and	(most	important)	letting	the	students	practice.

I	released	the	book	under	the	GNU	Free	Documentation	License,	which	allows
users	to	copy,	modify,	and	distribute	the	book.

What	 happened	 next	 is	 the	 cool	 part.	 Jeff	 Elkner,	 a	 high	 school	 teacher	 in
Virginia,	adopted	my	book	and	translated	it	 into	Python.	He	sent	me	a	copy	of
his	translation,	and	I	had	the	unusual	experience	of	learning	Python	by	reading
my	own	book.

Jeff	and	I	 revised	 the	book,	 incorporated	a	case	study	by	Chris	Meyers,	and	 in
2001	 we	 released	 How	 to	 Think	 Like	 a	 Computer	 Scientist:	 Learning	 with
Python,	also	under	the	GNU	Free	Documentation	License.	As	Green	Tea	Press,	I
published	 the	 book	 and	 started	 selling	 hard	 copies	 through	 Amazon.com	 and

college	 book	 stores.	 Other	 books	 from	 Green	 Tea	 Press	 are	 available	 at
greenteapress.com.

In	2003	I	started	teaching	at	Olin	College	and	I	got	to	teach	Python	for	the	first
time.	The	contrast	with	Java	was	striking.	Students	struggled	less,	learned	more,
worked	on	more	interesting	projects,	and	generally	had	a	lot	more	fun.

Over	the	last	five	years	I	have	continued	to	develop	the	book,	correcting	errors,
improving	 some	 of	 the	 examples	 and	 adding	material,	 especially	 exercises.	 In
2008	I	started	work	on	a	major	revision--at	the	same	time,	I	was	contacted	by	an
editor	at	Cambridge	University	Press	who	was	interested	in	publishing	the	next
edition.	Good	timing!

I	hope	you	enjoy	working	with	this	book,	and	that	it	helps	you	learn	to	program
and	think,	at	least	a	little	bit,	like	a	computer	scientist.

Acknowledgements	for	"Think	Python"

(Allen	B.	Downey)

First	and	most	importantly,	I	thank	Jeff	Elkner,	who	translated	my	Java	book	into
Python,	which	got	this	project	started	and	introduced	me	to	what	has	turned	out
to	be	my	favorite	language.

I	 also	 thank	 Chris	Meyers,	 who	 contributed	 several	 sections	 to	How	 to	 Think
Like	a	Computer	Scientist.

And	 I	 thank	 the	 Free	 Software	 Foundation	 for	 developing	 the	 GNU	 Free
Documentation	 License,	 which	 helped	 make	 my	 collaboration	 with	 Jeff	 and
Chris	possible.

I	also	thank	the	editors	at	Lulu	who	worked	on	How	to	Think	Like	a	Computer
Scientist.

I	thank	all	the	students	who	worked	with	earlier	versions	of	this	book	and	all	the
contributors	(listed	in	an	Appendix)	who	sent	in	corrections	and	suggestions.

And	I	thank	my	wife,	Lisa,	for	her	work	on	this	book,	and	Green	Tea	Press,	and
everything	else,	too.

Allen	B.	Downey
Needham	MA
Allen	Downey	is	an	Associate	Professor	of	Computer	Science	at	the	Franklin	W.
Olin	College	of	Engineering.

Contributor	List	for	"Think	Python"

(Allen	B.	Downey)

More	 than	100	sharp-eyed	and	thoughtful	 readers	have	sent	 in	suggestions	and
corrections	over	the	past	few	years.	Their	contributions,	and	enthusiasm	for	this
project,	have	been	a	huge	help.

For	the	detail	on	the	nature	of	each	of	the	contributions	from	these	individuals,
see	the	"Think	Python"	text.

Lloyd	 Hugh	 Allen,	 Yvon	 Boulianne,	 Fred	 Bremmer,	 Jonah	 Cohen,	 Michael
Conlon,	Benoit	Girard,	Courtney	Gleason	and	Katherine	Smith,	Lee	Harr,	James
Kaylin,	 David	 Kershaw,	 Eddie	 Lam,	 Man-Yong	 Lee,	 David	 Mayo,	 Chris
McAloon,	 Matthew	 J.	 Moelter,	 Simon	 Dicon	 Montford,	 John	 Ouzts,	 Kevin
Parks,	David	Pool,	Michael	Schmitt,	Robin	Shaw,	Paul	Sleigh,	Craig	T.	Snydal,
Ian	Thomas,	Keith	Verheyden,	Peter	Winstanley,	Chris	Wrobel,	Moshe	Zadka,
Christoph	 Zwerschke,	 James	 Mayer,	 Hayden	McAfee,	 Angel	 Arnal,	 Tauhidul
Hoque	 and	Lex	Berezhny,	Dr.	Michele	Alzetta,	Andy	Mitchell,	Kalin	Harvey,
Christopher	P.	Smith,	David	Hutchins,	Gregor	Lingl,	Julie	Peters,	Florin	Oprina,
D.	J.	Webre,	Ken,	Ivo	Wever,	Curtis	Yanko,	Ben	Logan,	Jason	Armstrong,	Louis
Cordier,	 Brian	 Cain,	 Rob	 Black,	 Jean-Philippe	 Rey	 at	 Ecole	 Centrale	 Paris,
Jason	Mader	at	George	Washington	University	made	a	number	 Jan	Gundtofte-
Bruun,	 Abel	 David	 and	 Alexis	 Dinno,	 Charles	 Thayer,	 Roger	 Sperberg,	 Sam
Bull,	Andrew	Cheung,	C.	Corey	Capel,	Alessandra,	Wim	Champagne,	Douglas
Wright,	 Jared	 Spindor,	 Lin	 Peiheng,	 Ray	 Hagtvedt,	 Torsten	 Hubsch,	 Inga
Petuhhov,	 Arne	 Babenhauserheide,	 Mark	 E.	 Casida,	 Scott	 Tyler,	 Gordon
Shephard,	 Andrew	 Turner,	 Adam	 Hobart,	 Daryl	 Hammond	 and	 Sarah
Zimmerman,	George	Sass,	Brian	Bingham,	Leah	Engelbert-Fenton,	 Joe	Funke,
Chao-chao	 Chen,	 Jeff	 Paine,	 Lubos	 Pintes,	 Gregg	 Lind	 and	 Abigail	 Heithoff,
Max	 Hailperin,	 Chotipat	 Pornavalai,	 Stanislaw	 Antol,	 Eric	 Pashman,	 Miguel
Azevedo,	Jianhua	Liu,	Nick	King,	Martin	Zuther,	Adam	Zimmerman,	Ratnakar
Tiwari,	 Anurag	 Goel,	 Kelli	 Kratzer,	 Mark	 Griffiths,	 Roydan	 Ongie,	 Patryk
Wolowiec,	Mark	Chonofsky,	Russell	Coleman,	Wei	Huang,	Karen	Barber,	Nam

Nguyen,	Stephane	Morin,	Fernando	Tardio,	and	Paul	Stoop.

Copyright	Detail
This	work	 is	 licensed	 under	 a	Creative	Common	Attribution-NonCommercial-
ShareAlike	3.0	Unported	License.	This	license	is	available	at

creativecommons.org/licenses/by-nc-sa/3.0/.

I	would	have	preferred	to	license	the	book	under	the	less	restrictive	CC-BY-SA
license.	But	unfortunately	there	are	a	few	unscrupulous	organizations	who	search
for	and	find	freely	licensed	books,	and	then	publish	and	sell	virtually	unchanged
copies	of	the	books	on	a	print	on	demand	service	such	as	LuLu	or	KDP.	KDP	has
(thankfully)	added	a	policy	that	gives	the	wishes	of	the	actual	copyright	holder
preference	 over	 a	 non-copyright	 holder	 attempting	 to	 publish	 a	 freely	 licensed
work.	Unfortunately	there	are	many	print-on-demand	services	and	very	few	have
as	well-considered	a	policy	as	KDP.

Regretfully,	I	added	the	NC	element	to	the	license	this	book	to	give	me	recourse
in	case	someone	tries	to	clone	this	book	and	sell	it	commercially.	Unfortunately,
adding	NC	 limits	 uses	 of	 this	material	 that	 I	 would	 like	 to	 permit.	 So	 I	 have
added	 this	 section	 of	 the	 document	 to	 describe	 specific	 situations	where	 I	 am
giving	my	permission	 in	advance	 to	use	 the	material	 in	 this	book	 in	 situations
that	some	might	consider	commercial.

If	you	are	printing	a	limited	number	of	copies	of	all	or	part	of	this	book	for
use	 in	 a	 course	 (e.g.,	 like	 a	 coursepack),	 then	 you	 are	 granted	 CC-BY
license	to	these	materials	for	that	purpose.

If	 you	 are	 a	 teacher	 at	 a	 university	 and	 you	 translate	 this	 book	 into	 a
language	other	 than	English	and	teach	using	the	translated	book,	 then	you
can	contact	me	and	I	will	grant	you	a	CC-BY-SA	license	to	these	materials
with	respect	to	the	publication	of	your	translation.	In	particular,	you	will	be
permitted	to	sell	the	resulting	translated	book	commercially.

If	you	are	intending	to	translate	the	book,	you	may	want	to	contact	me	so	we	can
make	sure	that	you	have	all	of	the	related	course	materials	so	you	can	translate
them	as	well.

Of	 course,	 you	 are	 welcome	 to	 contact	 me	 and	 ask	 for	 permission	 if	 these
clauses	 are	 not	 sufficient.	 In	 all	 cases,	 permission	 to	 reuse	 and	 remix	 this
material	 will	 be	 granted	 as	 long	 as	 there	 is	 clear	 added	 value	 or	 benefit	 to
students	or	teachers	that	will	accrue	as	a	result	of	the	new	work.

Charles	Severance
www.dr-chuck.com
Ann	Arbor,	MI,	USA
September	9,	2013

	Python for Everybody
	Why should you learn to write programs?
	Creativity and motivation
	Computer hardware architecture
	Understanding programming
	Words and sentences
	Conversing with Python
	Terminology: Interpreter and compiler
	Writing a program
	What is a program?
	The building blocks of programs
	What could possibly go wrong?
	Debugging
	The learning journey
	Glossary
	Exercises

	Variables, expressions, and statements
	Values and types
	Variables
	Variable names and keywords
	Statements
	Operators and operands
	Expressions
	Order of operations
	Modulus operator
	String operations
	Asking the user for input
	Comments
	Choosing mnemonic variable names
	Debugging
	Glossary
	Exercises

	Conditional execution
	Boolean expressions
	Logical operators
	Conditional execution
	Alternative execution
	Chained conditionals
	Nested conditionals
	Catching exceptions using try and except
	Short-circuit evaluation of logical expressions
	Debugging
	Glossary
	Exercises

	Functions
	Function calls
	Built-in functions
	Type conversion functions
	Math functions
	Random numbers
	Adding new functions
	Definitions and uses
	Flow of execution
	Parameters and arguments
	Fruitful functions and void functions
	Why functions?
	Debugging
	Glossary
	Exercises

	Iteration
	Updating variables
	The while statement
	Infinite loops
	Finishing iterations with continue
	Definite loops using for
	Loop patterns
	Counting and summing loops
	Maximum and minimum loops

	Debugging
	Glossary
	Exercises

	Strings
	A string is a sequence
	Getting the length of a string using len
	Traversal through a string with a loop
	String slices
	Strings are immutable
	Looping and counting
	The in operator
	String comparison
	String methods
	Parsing strings
	Formatted String Literals
	Debugging
	Glossary
	Exercises

	Files
	Persistence
	Opening files
	Text files and lines
	Reading files
	Searching through a file
	Letting the user choose the file name
	Using try, except, and open
	Writing files
	Debugging
	Glossary
	Exercises

	Lists
	A list is a sequence
	Lists are mutable
	Traversing a list
	List operations
	List slices
	List methods
	Deleting elements
	Lists and functions
	Lists and strings
	Parsing lines
	Objects and values
	Aliasing
	List arguments
	Debugging
	Glossary
	Exercises

	Dictionaries
	Dictionary as a set of counters
	Dictionaries and files
	Looping and dictionaries
	Advanced text parsing
	Debugging
	Glossary
	Exercises

	Tuples
	Tuples are immutable
	Comparing tuples
	Tuple assignment
	Dictionaries and tuples
	Multiple assignment with dictionaries
	The most common words
	Using tuples as keys in dictionaries
	Sequences: strings, lists, and tuples - Oh My!
	List comprehension
	Debugging
	Glossary
	Exercises

	Regular expressions
	Character matching in regular expressions
	Extracting data using regular expressions
	Combining searching and extracting
	Escape character
	Summary
	Bonus section for Unix / Linux users
	Debugging
	Glossary
	Exercises

	Networked programs
	Hypertext Transfer Protocol - HTTP
	The world's simplest web browser
	Retrieving an image over HTTP
	Retrieving web pages with urllib
	Reading binary files using urllib
	Parsing HTML and scraping the web
	Parsing HTML using regular expressions
	Parsing HTML using BeautifulSoup
	Bonus section for Unix / Linux users
	Glossary
	Exercises

	Using Web Services
	eXtensible Markup Language - XML
	Parsing XML
	Looping through nodes
	JavaScript Object Notation - JSON
	Parsing JSON
	Application Programming Interfaces
	Security and API usage
	Glossary
	Application 1: Google geocoding web service
	Application 2: Twitter

	Object-oriented programming
	Managing larger programs
	Getting started
	Using objects
	Starting with programs
	Subdividing a problem
	Our first Python object
	Classes as types
	Object lifecycle
	Multiple instances
	Inheritance
	Summary
	Glossary

	Using Databases and SQL
	What is a database?
	Database concepts
	Database Browser for SQLite
	Creating a database table
	Structured Query Language summary
	Spidering Twitter using a database
	Basic data modeling
	Programming with multiple tables
	Constraints in database tables
	Retrieve and/or insert a record
	Storing the friend relationship

	Three kinds of keys
	Using JOIN to retrieve data
	Summary
	Debugging
	Glossary

	Visualizing data
	Building a OpenStreetMap from geocoded data
	Visualizing networks and interconnections
	Visualizing mail data
	Credits
	Printing History
	Copyright Details

	Preface
	Remixing an Open Book

	Contributions
	Contributor List for Python for Everybody
	Contributor List for Python for Informatics
	Preface for "Think Python"
	The strange history of "Think Python"
	Acknowledgements for "Think Python"

	Contributor List for "Think Python"

	Copyright Detail

